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ABSTRACT

A laser spectroscopic measurement of the nuclear charge radius of 6He (t1/2 = 806 ms) and

8He (t1/2 = 119 ms) is reported. This is the first nuclear-model independent determination

of the charge radius of 8He and is an improvement over a previous determination made for

6He. Atomic isotope shift measurements between 8He and 4He as well as between 6He and

4He on the 23S1 − 33PJ transitions were performed. The isotope shift can be considered

as a sum of two parts, a “mass shift” which is proportional to the difference in nuclear

recoil energy of the two isotopes, and a “field shift” which is proportional to the difference

in their mean square charge radii. By performing precise isotope shift measurements and

using high precision atomic theory calculations of helium for the mass shift, the field shift

was determined. This, along with the charge radius of 4He—known precisely from electron

scattering, yielded the values 2.061±0.008 fm and 1.955±0.017 fm for the charge radii of 6He

and 8He respectively. Also, the hyperfine intervals in the 33P manifold of 3He were measured

with improved precision. In addition, the suppression of certain allowed transitions in 3He

due to the breakdown of LS coupling was investigated.

In the second half of this work, results of studies towards a search for a non-zero perma-

nent electric dipole moment (EDM) of 225Ra are given. A non-zero EDM would signify the

violation of the discrete symmetries of parity (P) and time-reversal symmetry (T). It is be-

lieved that because of its nuclear structure, 225Ra is a particularly sensitive system to search

for P and T violation. The search will be performed in a sample of radium atoms trapped

in a one dimensional optical lattice. The details of laser cooling, trapping and manipulation

of radium atoms towards enabling the EDM search are reported. In addition, the lifetime of

the 7s6d1D2 atomic level of radium was measured for the first time to be 385± 45 µs.
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CHAPTER 1

INTRODUCTION

Precision measurements have played very important roles in informing our understanding

of the physical world. As experiments reach greater levels of precision, their sensitivity to

more subtle effects is increased. This often demands the reformulation of physical theories—

leading to greater insight as to the nature of the forces and mechanisms that make our

universe operate as it does. This has been the story of physics over the years. We hope,

in the work reported here, to contribute to this rich tradition of precision measurements by

performing laser spectroscopy on helium and radium atoms.

In the first half of this thesis, we will test nuclear theory for the light helium isotopes by

providing measurements of an allowed moment of the nuclear charge distribution—the RMS

nuclear charge radius. In the second half of the work, we are motivated by the prospects of

detecting evidence of physics beyond the standard model. The signature for this is that a for-

bidden moment of the charge distribution—the permanent electric dipole moment (EDM)

of radium-225, would be detected to be non-vanishing. Both classes of experiments rely on

the laser cooling and trapping of radioactive atoms. The high selectivity and robustness of

these techniques make the measurements possible with relatively few atoms.

For our studies of helium reported in Part-I of the thesis, we were particularly interested

in studying the structure of the neutron rich helium isotopes 6He and 8He by determining

their RMS nuclear charge radii. Chapters 2 to 4 give a motivation for the experiment, as

well as a review of experimental probes for determining nuclear sizes. In chapter 5, we

describe in detail our experiment to measure the charge radius of 6He and 8He. We give

an overview of the hardware required, as well as the data analysis of results obtained. In

chapters 6 and 7, we describe some supporting work, consisting of spectroscopy of 3He. This

involved measuring the hyperfine intervals in the 33P manifold, as well as investigating the
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suppression of some ‘allowed’ transitions in 3He.

In Part-II of this work, we report on our studies of radium. The primary motivation for

studying radium is that it is an attractive system to use in searching for the violation of

parity (P) and time - reversal symmetry (T). Any such violation of both P and T would

be indicative of physics that is not currently described by standard model. Chapter 8 gives

a brief review of discrete symmetry tests using permanent EDMs, and chapter 9 describes

why radium has an enhanced sensitivity to possible symmetry violations. In chapter 10,

we report the experimental details for laser cooling and trapping of radium. We report in

chapter 11 our measurement of the lifetime of the 7s6d 1D2 atomic state of radium. Finally,

we discuss our proposal for studies of the DC Stark shifts of radium in chapter 12.
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Part I: Studies with Helium



CHAPTER 2

MOTIVATION FOR HELIUM NUCLEAR CHARGE RADIUS

MEASUREMENTS

A fundamental property of each nucleus is its size. Like many of its other properties, this

intimately depends on the nature of the forces that bind the nucleus together—the nuclear

potential. An important task in nuclear physics is to understand the microscopic nature of

this potential in terms of an appropriate basis. Describing the nucleus in terms of quarks

and gluons would amount to solving QCD in the low energy and highly non-perturbative

regime. Precise calculations of nuclear structure are currently unobtainable using QCD.

An alternative way of describing nuclei is in terms of nucleon-nucleon interactions. The

force between nucleons arises from a residual strong interaction—much like the van der Waals

force that exists between two electrically neutral atoms. The most precise nuclear models

are the so - called ab initio microscopic theories that construct potentials based on bare

nucleon-nucleon interactions, which are then used to solve the nuclear many-body problem.

They are especially successful in describing the (A ≤ 10) light nuclei. The experiments we

describe in part I of this thesis report results for nuclear charge radii for the helium isotopes

6He and 8He. These serve as high precision checks for nuclear structure calculations–testing

both the potentials used and the many-body methods employed.

2.1 Characterizing nuclear size

The spatial distribution of nucleons in a nucleus can be characterized by a root-mean square

radius. Nuclear models often make the assumption of point-like nucleons. In reality though,

these nucleons have a finite spatial extent which must be considered in characterizing the

nuclear size. Depending on the kind of experiment performed, one is sensitive to the distribu-
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tion of the protons predominantly, (such as scattering experiments using an electromagnetic

probe) or to all of the nucleons (such as in experiments using a hadronic probe). We define

below a number of nuclear radii expressed in terms of the ground state wavefunction of the

nucleus ΨN . ΨN is a solution of the non-relativistic many body Schroedinger equation over

all the nucleons in the nucleus.1

H ΨN(ri, r2 . . . rA) = E ΨN(ri, r2 . . . rA) (2.1)

In equation 2.1, ri represents the set of all the coordinates (spatial, momentum, spin, isospin

etc.) associated with each nucleon. The ab initio Hamiltonian is constructed as the sum of

a kinetic energy Ki, two-body nucleon-nucleon potential vij, and a three-body potential vijk

.

H =
A∑

i

Ki +
A∑

i<j

vij +
A∑

i<j<k

vijk + . . . (2.2)

In principle, one can envision N-body potentials, though in practice, modern potentials

usually only go up to the three-body term.

Given the charge density distribution ρc(r), the mean square charge radius is

〈
r2
〉
=

∫

r2ρc(r)d
3r (2.3)

where ρc(r) is normalized by
∫
d3rρc(r) = Ze

Now, as is often done in calculations of charge distributions, point-like nucleons are

assumed. From [128], given the nuclear wavefunction, the point-proton density is

1. A non-relativistic treatment is justified because of the relatively low velocities of the nucleons in the
nucleus. For example, the average kinetic energy of a nucleon is ∼ 50 MeV, which can be compared to its
mass ∼ 1 GeV.
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ρp(r) =
1

4πr2

〈

ΨN

∣
∣
∣
∣
∣

A∑

i

1 + τiz
2

δ(r − |ri −Rcm|)
∣
∣
∣
∣
∣
ΨN

〉

(2.4)

and likewise the point-proton RMS radius is

〈
r2
〉
=

∫

r2ρp(r)d
3r (2.5)

In equation 2.4, the (1 + τiz)/2 term projects out the contribution from the protons. If

no projector is used, we then have

ρN(r) =
1

4πr2

〈

ΨN

∣
∣
∣
∣
∣

A∑

i

δ(r − |ri −Rcm|)
∣
∣
∣
∣
∣
ΨN

〉

(2.6)

which can be used to calculate the point-nucleon rms radius.

When the finite size of the nucleons is properly taken into account, we can relate rc to

the point proton radius by

〈
r2c
〉
=
〈
r2pt
〉
+
〈
R2

p

〉
+N/Z

〈
R2

n

〉
+

3

4M2
p

(2.7)

where N = A − Z, and
〈
R2

p

〉1/2
and 〈R2

n〉
1/2 are the root mean square charge radii of

the proton and neutron respectively. The final term in equation 2.7 is the Darwin-Foldy

correction to the proton radius [69].

As we mentioned above, we can test the quality of the nuclear potential as well as the

approaches for solving the many-body Schroedinger equation by comparing theory results

with experiment. We note that from the r2 dependence of the operator, charge radii are

particularly sensitive to the long-range parts of the nuclear wavefunction. We next con-

sider the appropriate nuclear potential to use by starting from a two body nucleon-nucleon

interaction.

6



2.2 Nucleon-Nucleon Interactions

Gross features of the two-body N-N potential can be surmised from n-n, n-p and p-p elastic

scattering as well as from the properties of the deuteron [170]. There is a large library of

results of N-N elastic scattering experiments performed over the years. Angular distributions,

cross sections, polarizations, asymmetries and other observables have been determined at a

variety of energies [167]. The Nijmegen database contains one such compilation [76], where

the results of NN scattering are synthesized into a partial-wave analysis. The prevailing

picture that emerges from the data is that among other things, the N-N potential has a

strong repulsive core,it is spin and isospin dependent, and it is non-central. Under some

conditions, depending on the relative angular momentum of the two nucleons, the potential

is attractive. Ab - inito models are constructed to reflect this character.

The problem of the origin and nature of the nuclear force is a very old one. A particu-

larly important idea that emerged was due to Yukawa [172], where he recognized that the

short range of the strong nuclear force could be explained in an exchange picture where the

exchanged particle has a mass which gives the nucleon-nucleon force a characteristic range

that is inversely proportional to the mass of the exchanged particle, which in this case is the

pion. The one pion exchange potential (OPEP) is an important component of all modern

N-N potentials. The pion is the lightest meson, and the force due to the exchange of the

pion leads to the long tail of the N-N potential. In general, one can consider the one-boson

exchange potential, where a boson of mass m and coupling constant f is exchanged. In the

case of the OPEP, the potential assumes the form

VOPEP =
1

3

f 2

~c
mπc

2(τ1 · τ2)
[

σ1 · σ2 + S12

(

1 +
3

µr
+

3

(µr)2

)]
e−µr

µr
(2.8)

The strength of the interaction is given by the coupling constant f for the N → N + π

process. This can be determined for example from π - nucleon scattering. It is a measure of
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the strength of a meson field surrounding a nucleon [27]. τ and σ are the isospin and spin

of the nucleons and

S12 = 3(σ1 · r̂)(σ2 · r̂)− σ1 · σ2 (2.9)

is a tensor operator. The masses of the exchanged pions are

mπ0 = 139.6Mev, mπ± = 135.0Mev, µ ≡ mπc

~
= 0.70(fm)−1,

f2

~c
= 0.081. (2.10)

The non-central character of the nuclear force is made evident in the OPEP; as represented

by the tensor operator S12.

Figure 2.1: Feynman diagrams for N-N forces. (a) The OPEP which leads to the long range
part of the force and (b) Two-Pion Exchange and the more general One-Boson exchange
contribution which yield intermediate range contributions.

In constructing a modern N-N potential, the total two-body potential V can be expressed

as the sum of an electromagnetic part V γ
ij , an OPEP component V π

ij and an intermediate

range/repulsive core component V R
ij

Vij = V γ
ij + V π

ij + V R
ij (2.11)

The EM interaction is very well understood and is the significant isospin symmetry breaking

part of the potential. The strong-interaction part of the potential, V π
ij + V R

ij , is the more
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challenging part to construct. It, in addition, also has charge dependent (CD) and charge

symmetry breaking (CSB) contributions. These are necessary for reproducing experimental

results.

There are a number of widely used two-body nucleon nucleon potentials in the community.

For example, there is a Reid and Nijmegen series [153], a Bonn series [104], a Paris series

[99], an Argonne series [168] etc. An excellent review of the different potentials can be found

in [167].

These models are all similar in that they are fit to the results of a partial wave analysis

of a large dataset of N-N scattering. Also, the long range components are given by the

OPEP. The potentials differ however in the manner they treat the intermediate and short

range component. They also differ in the way the potential is expressed. While some of

them are written in position space (r-space), others are written in momentum space (k-

space). Furthermore, some are written with an operator structure, where the potential

is expressed as a sum of operators, which are constructed in a manner that is manifestly

allowed by all relevant symmetries. The terms that go into the expression of the potential

are constrained to satisfy translational, rotational, Galilean symmetry, as well as invariance

under time-reversal and parity [167]. For example, the Argonne series of potentials [167]

are built up using an operator construct structure. Such a construction is well adapted to

use in variational calculations. An alternative structure used is a partial-wave expansion.

Here, the potential is specified separately in each 2S+1LJ channel, as used for example in

the Reid/Nijmegen series [153], and the Bonn series [104] of potentials. This approach

typically leads to somewhat better fits to the data. However, by treating the partial waves

independently, some non-locality is introduced [167]. Such a formulation is suited for Fadeev

calculations of the many-body problem.

As noted in [167], a guiding principle in constructing N-N potentials is often to build the

models in such a way as to optimize the accuracy with which they reproduce the two-body
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data and the ease of use in many body calculations. Another goal, which might conflict

with the first, is to elucidate the role of the sub-nucleon degrees of freedom in the N-N

interaction. Depending on which of the goals above one is interested in, this will inform the

manner in which the V R
ij is constructed. In order to highlight the sub-nucleonic degrees of

freedom, a ’meson-theoretic’ approach is used, where, in addition to the OPEP, V R
ij includes

the exchange of various other massive bosons. This is the approach taken in the Bonn family

of potentials. The Argonne family on the other hand treats V R
ij more phenomenologically.

We show some representative two-body potentials for a number of interaction channels in

figure 2.2.
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Figure 2.2: The potential between two nucleons as a function of separation between nucleons.
The Reid93 Potential is plotted above, using the code published in [76]. We show some
representative allowed channels. Some channels are forbidden on symmetry grounds. For
example, low energy S-wave scattering, n-n or p-p can only occur in the singlet channel due
to the Pauli exclusion principle.
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We briefly describe here the Argonne v18 [168], the CD-Bonn potential [104] and the INOY

potential [48]. These are quite representative of the available models. Moreover, they are of

particular interest for our studies, as they have been used to calculate the charge radii of 6He

and 8He. They also aim at addressing a common problem among many of these potentials,

which is the issue of non-locality. The Bonn family of potentials are ‘non-local’ in the

sense that the value of the potential at one point depends on the value of the wavefunction

at a second point. The INOY (Inside non-local outside Yukawa) family of potentials are

constructed in r-space such that the long-range part of the N-N interaction is well fit by the

OPEP. The short-range behavior is treated phenomenologically in a manifestly non-local

fashion. In doing so though, they are able to fit to properties of the three-nucleon systems

the triton 3H, and 3He. Because the INOY potential is fit to A = 3 nuclei, the understanding

is that some of the non-locality introduced is actually due to the three-nucleon interaction

[126, 35].

The Av18 is the latest in the series of Argonne potentials formulated by R. Wiringa,

S. Peiper and collaborators. It comprises of 18 operators with allowance made for charge

dependent (CD) and charge symmetry breaking (CSB) terms. The hard core is treated

phenomenologically. It is a local potential, formulated in r-space. It has 40 free parameters

in total and is constrained by fitting to the deuteron binding energy, 1787 p-p and 2514 n-p

elastic scattering data from 0 - 350 MeV. The total fitting is achieved with a χ2 per datum

of ∼ 1.09. Details about the Argonne series of potentials in general, and the Argonne v18 in

particular can be found in [168, 128, 125].

The CD-Bonn belongs to the family of Bonn potentials formulated by R. Machleidt [104].

They are meson theoretic in the sense that the long range potential is given by the OPEP.

Intermediate potentials are given by exchange of heavier mesons, the ω-meson, the ρ meson,

as well as a ‘phenomenological’ σ-meson. It is phenomenological in that it is a fictitious

scalar boson of mass ∼ 500 MeV, chosen to reproduce the intermediate range attraction of
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the potential. As noted in [167], the microscopic source of this intermediate range attraction

is believed to be due to two-pion exchange with the possible excitation of the intermediate

nucleons to the ∆ resonance. It is written in k-space and is non-local. Like the Av18, it has

nearly 40 free parameters and has been fit to the partial wave analysis from the Nijmegen

group with a χ2 per datum ∼ 1.

2.2.1 Three-Body Forces

Once the two-nucleon potentials are obtained as described above, they can be used to solve

the many-body Schroedinger equation for a nucleus with A-nucleons. Take for example

the Argonne series of potentials, for which nuclear structure is performed with Quantum

Monte Carlo techniques [127, 125, 126]. For nuclei with A ≥ 3, the observation is that the

gross features of the nuclear structure is reproduced. In particular, the correct ordering of

the nuclear states is observed, and likewise the rapid saturation of nuclear binding energies

above 4He is reproduced . Notably though, with the exception of 2H, other nuclei are under-

bound. Some of the weakly bound nuclei are actually unbound to particle emission with only

the two-nucleon potentials. This is shown in figure 2.4. Also, the two-nucleon calculations

over-estimate the equilibrium nuclear densities [127]. This suggests that the potential used

is incomplete and that it is important to augment the two-body potential with more terms.

In particular, an additional attraction is needed in order to increase the binding energies.

However, a short-range repulsive interaction is desired in order to maintain a saturated

nuclear density to the experimental value [127].

In the meson exchange picture, there are a number of ways in generating a three-body

interaction. These involve the exchange of 2-pions or 3-pions, along with a nucleon being in

its excited state. In the lowest order, we can consider an s-wave 2-pion exchange interaction,

and a p-wave 2-pion exchange interaction. Additionally, there are also 3-pion rings which
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also lead to NNN forces. These are diagrammatically shown in figure 2.3 As in the case

Figure 2.3: Three-nucleon forces. (a) The Fujita-Miyazawa three-body force [89].This arises
from π-N scattering of the pion being exchanged between the 2 nucleons by a third nucleon
via the p-wave ∆ resonance. It leads to an attractive interaction. (b) This force arises from
π-N S-wave scattering between the pion being exchanged by the two nucleons with a third
partner. (c) and (d) are 3-pion rings, which rely on one of the nucleons being in the excited
state

of the NN interactions, a number of modern NNN potentials have been developed. Some

examples of those available in the community are the Tuscon-Melbourne family of potentials

[43], the Brazil potential [41], the Illinois series [127]. They include a number of the diagrams

shown in the figure 2.3, as well as possibly a phenomenological treatment of the short range.

The Illinois series for example have a total of 5 free parameters, and are used (along with

the Av18) to fit the 17 lowest lying energy levels of the light nuclei. Results of only a NN

potential augmented by the NNN potential are shown in figure 2.4.

As we mentioned above, without the NNN component of the ab initio potentials, nuclei

with A ≥ 2 are under bound. In particular, 6He and 8He are not bound at all with only the

two-body NN interaction. This means that the excitation spectra of 6He and 8He, as well as

other observables, such as their charge radii are sensitive to the three-nucleon potential.
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Figure 2.4: Nuclear levels of light isotopes calculated by GFMC using the AV18 + IL2
potentials. Using the AV18 which includes only a two-body force, we note that both 6He
and 8He are not bound with respect to breakup into an alpha particle + 2n and 6He + 2n.
They are only bound when the three body force is applied. The width of the 10He resonance
has been measured to be 300 keV. This corresponds to a half life of ∼ 10−21 s [119].

2.2.2 Many Body Calculations of Nuclear Structure

Once a high quality nuclear potential is constructed, the next task is to use it in the nuclear

many-body Schroedinger equation. We briefly describe two approaches for solving the nuclear

many-body problem which have been used to predict charge radii for the helium isotopes.

No Core Shell Model

The mean-field nuclear shell model is based on the idea that the nucleons are bound in an

average potential provided by the other nucleons in the nucleus. Also, the nucleons exist

in quantum states with definite angular momentum and parity. The sets of states with
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the same angular momentum are, like in atomic physics, referred to as orbitals. States

with filled orbitals are particularly tightly bound and form ‘shells’. In many calculations,

only the nucleons outside the closed shell are considered as active. Calculations can then be

performed in significantly smaller Hilbert space which allows for the excitation of the valence

nucleons. Although there is freedom in choosing which basis to use in representing the

system, a harmonic oscillator basis is attractive due to its favorable algebraic structure, and

also because harmonic oscillator eigenfunctions are good approximations of the single-particle

wavefunctions in the mean field. Shell models with their varying degrees of sophistication

are reviewed in [32].

The No Core Shell Model (NCSM) is an extension of this concept. In this approach, all

the nucleons are ‘active’. The strategy is to expand modern potentials, such as the Av18,

Nijemegen or CDBonn in a harmonic oscillator basis. By diagonalizing the Hamiltonian, one

obtains energy levels as well as wavefunctions which can be used to determine expectation

values of other observables. There is a dependence of the calculated value of an observable

on the size of the model space used. Convergence studies must then be performed, whereby

an observable is calculated as a function of the size of model space used. A good reference

for the NCSM is [35].

Quantum Monte Carlo

Quantum Monte carlo refers to a class of techniques of solving the nuclear many-body prob-

lem where monte-carlo integration techniques are used. In the work of Wiringa and Pieper,

the Variational Monte Carlo (VMC) scheme is used along with the Green’s Function Monte

Carlo (GFMC). The VMC method starts with the construction of a trial wavefunction of

a specified angular momentum, parity and isospin Ψv(J
π;T ). As described in [128], given

a trial wavefunction Ψv, the Metropolis monte-carlo integration method is used to evaluate
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the expectation value 〈Ψv|H |Ψv〉. By the variational principle, this gives an upper bound

on the energy of the ground state

EV =
〈Ψv|H |Ψv〉
〈Ψv| Ψv〉

≥ E0 (2.12)

The parameters of Ψv are varied to minimize EV . The resultant Ψv can then be used to

calculate other properties as the expectation value of the appropriate operator, or some

overlap integral in order to calculate state to state transition rates.

It turns out that the VMC alone does not lead to the lowest energy state. The GFMC

scheme [128, 125, 126] can reach lower energies by taking Ψv as a starting wavefunction. It

systematically projects out components of excited states which are still in the wavefunction

Ψv. The idea is to project out the exact lowest energy state by evaluating

Ψ0 = lim
t→∞

exp[−(H− E0)τ ]Ψv, (2.13)

As can be seen from equation 2.13, components of the wavefunction with energy sub-

stantially larger than E0, are quickly suppressed. In the limit t→ ∞, this leads to the exact

〈H〉 [128].

Thus, by performing a GFMC integration of a wavefunction engineered to have a given

spin and parity leads to a wavefunction of that state with energy minimized. The challenges

in these studies is therefore to build better initial trial wavefunctions and to develop efficient

algorithms for performing the monte-carlo integration. This has been applied to nuclei as

large as A=12 [126].

Other approaches used in solving the nuclear many body problem for light nuclei are

for example the Fadeev method [117], the stochastic variational method, coupled cluster

approach, and the correlated hyperspherical harmonics [97]. In 2001, a benchmark test was
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performed whereby a large number of the different many-body approaches were used to

compute the properties of 4He [93] using the same potential—the Av′8 NN interaction. The

calculations of the binding energies and rms radii all agreed to within ∼ 2%.

2.2.3 ab initio Calculations for point-proton radii for Helium

We give below the predictions for the point-proton radii of the 6He and 8He isotopes using

the NCSM method performed by Caurier and Navratil in [35], as well as with GFMC method

by Pieper and Wiringa in [126].

Table 2.1: point-proton radii of 4, 6, 8He in fm using ab initio potentials along with the
NCSM [35] and GFMC [126] method. The potential used in each calculation is given in
parenthesis.

Experiment. NCSM NCSM GFMC

(CD-Bonn 2000) (INOY) (Argonne v18 + IL6 )

4He 1.455(1) 1.45(1) 1.37(1) 1.45(1)
6He 1.912(8) 1.89(4) 1.76(3) 1.92(4)
8He 1.88(6) 1.74(6) 1.82(2)
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CHAPTER 3

EXPERIMENTAL PROBES OF NUCLEAR CHARGE RADII

There are a number of different experimental techniques for determining nuclear charge

radii. In chapter 5, we will report our measurement of the charge radius of 6He and 8He

using laser spectroscopy of trapped helium atoms. I will put our technique in context by

describing some of the other common techniques for determining the charge distribution of

nuclei—highlighting their strengths and limitations.

3.1 Electromagnetic probes of the charge distributions

3.1.1 Low energy elastic electron scattering

The majority of the charge radii of nuclei are determined by low energy elastic electron

scattering [148].

For an incident electron beam with energy E which is scattered with an energy E′, the dif-

ferential cross-section can be written in terms of the relativistic invariant q2 = 4EE′sin2(Θ/2).

For a spin 1/2 nucleus, such as 3He or the proton, we have:

dσ

dΩ
(E,Θ) =

(Zα)2E ′

4E3sin4(Θ/2)

[

A(q2)cos2
(
Θ

2

)

+ B(q2)sin2

(
Θ

2

)]

(3.1)

A(q2) and B(q2) are structure functions which encode the deviation of the nucleus from the

point scatterer. Another convenient way of describing the finite nuclear size contribution to

the scattering cross section is in terms of the electric and magnetic form factors.

A(q2) =
G2

E(q
2) + (1 + κ)2τG2

M(q2)

1 + τ

B(q2) = 2τ(1 + κ)2G2
M(q2)

(3.2)
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where τ = q2/4M2, κ is the anomalous magnetic moment of the nucleus, and GE(q
2) and

GM(q2) are the Sach’s electric and magnetic form factors respectively. For a nucleus with

no nuclear spin such as 4He, the magnetic form factor, GM(q2) vanishes, and the expression

for the differential cross section reduces to

dσ

dΩ
(E,Θ) =

(Zα)2E ′cos2(θ/2)

4E3sin4(Θ/2)
G2

E(q
2) (3.3)

In the Breit frame (i.e. the frame where the electron beam with initial momentum

p = −Q
2

is scattered to p′ = +Q
2
), the electric form-factor GE(q

2), can be expressed as

GE(q
2) =

∫

ρc(r)e
iq·rd3r. (3.4)

GE(q
2) can be identified in equation 3.4 as the Fourier transform of the charge distribution.

In the region of low momentum transfer q2, equation 3.4 can be expanded to yield

GE(q
2) ≈

∫

ρ(r)

[

1 + (iq · r) + 1

2!
(iq · r)2 + 1

3!
(iq · r)3 + . . .

]

d3r

=

[

1− q2

6

〈
r2c
〉
+

q4

120

〈
r4c
〉
+ . . .

] (3.5)

where the mean square charge radius is

〈
r2
〉
=

∫

r2ρ(r)d3r. (3.6)

It is therefore evident that, to the extent thatGE(q
2) can be determined at low q2, the rms

radius of the nucleus can be extracted. The charge radii of many nuclei have been determined

in this manner [84]. A key result of the electron scattering studies of charge distributions is

shown in figure 3.1. A survey of the charge distribution of nuclei with different masses led

to the qualitative observation that the distributions for many nuclei could be represented by
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the Fermi form with two parameters:

ρ(r) =
ρ(0)

1 + e(r−R)/a
(3.7)

where ρ(0) is the approximate central density, R is the half density radius, and a is the

surface thickness parameter. This is shown on the left panel of figure 3.1.

From a survey of the charge radii of a number of nuclei, the following observations can

be made:

1 R ∼ r0A
1/3, with r0 ∼ 1.25 fm, for a broad range of nuclei. This scaling suggests a

roughly constant density of nuclear matter. This supports the idea that the nucleus is an

incompressible fluid of tightly packed nucleons.

2 The surface diffuseness a ∼ 2.4± 0.3× 10−13 cm for a large range of nuclei.

We note here that 6He and 8He belong to a class of nuclei with mass distributions that

do not follow this general trend. They are so called ‘halo nuclei’—and are characterized by

rather large spatial extent of their neutron wavefunctions [4].

In electron-Nucleus scattering described above, the EM interaction is dominant. No-

tably though, the electrons also interact through the weak interaction. For example, Parity-

Violating electron scattering can be used to study the weak interaction between the nucleus

and the electrons. At low momentum transfer, the Z boson couples predominantly to the

neutron. Hence, by measuring Parity violating cross sections from electron-nucleus scatter-

ing, one can determine the neutron distribution in the nucleus. This is for example the aim

of the 208Pb Radius Experiment “PREX” which is scheduled to be performed at Jefferson

Laboratory [86, 133].
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Figure 3.1: Charge density distribution for a number of different nuclei obtained by electron
scattering. General shape of distribution resembles a Thomas Fermi form. Figure on left
obtained from [83]

3.1.2 Atomic and Muonic Atom Spectroscopy

Another class of electromagnetic probes of charge distributions in nuclei is atomic and muonic

atom spectroscopy. Here, the bound leptons (electrons or muons) are used as a probe of the

nucleus. We first consider the case of a bound electron. The main idea is that for a bound

electron, there is a non-zero probability of its being in the nuclear volume. This probability is

particularly high for an electron in an S orbital. Consequently, the potential that it samples

is not simply a Coulomb potential due to a point charge. Consider for example an atom with

an electronic wavefunction ψn, and a nuclear radius R. Assuming that the wavefunction of

the electron is constant in the nuclear volume, we can separate the energy of the state as:

En =

∫

r<R

ψ∗
nV

′ψndv +

∫

r>R

ψ∗
nV ψndv. (3.8)
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where V is the ∼ 1/r Coulomb potential due to a point charge , and V ′ is the modified

potential felt by the electron when it is in the nuclear volume when r < R The point nucleus

value can be readily calculated, and the energy of the transition measured experimentally.

Deviations of En from the point nucleus value yield information about R and the charge

distribution in the nucleus. A natural scale that governs the extent to which the electron

wavefunction probes the nucleus is the ratio R/a0 ∼ 10−5, where a0 is the Bohr radius–a

typical electron orbit size. This implies that the contribution to En due to finite nuclear size

effects is of that order. In order to use this method to determine R therefore, the electronic

wavefunctions must be known to high precision.

Optical and X-Ray electronic transitions have been used successfully in obtaining nuclear

size parameters for a variety of nuclei using this method. By considering the deviation from

the point nucleus approximation in the isotope shift of a particular transition, the sensitivity

to uncertainties in the electronic wavefunctions can be minimized. We make use of this

method in our studies of 8He and 6He, and will describe it in more detail in chapter 4

Muonic atoms are formed by substituting one of the bound electrons with a muon. A

muon is captured by an atom in a high lying Rydberg level and eventually cascades down

to the innermost electron orbit. The capture and cascade take ∼ 10−12 − 10−9s, while the

lifetime of the muon is ∼ 2.2 × 10−6s. As such the muon spends most of its lifetime bound

to the nucleus [122]. Because of the difference in mass (mµ/me = 207), the orbit of the

bound muon is correspondingly ∼ 200 times smaller, and the deviation of the energy of the

bound muon from that calculated using the point nucleus is correspondingly four orders of

magnitude larger. This method has proved to be rather successful, and has been used to

determine charge radii of a variety of nuclei [63]. A recent result for the determination of

the proton charge radius using muonic hydrogen is particularly interesting [129] because it

is more precise than other determinations of the rms proton radius—but yet is 5 standard

deviations away from the particle data group value. As of now, there is not yet a resolution
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for this discrepancy. An obvious disadvantage of muonic atom spectroscopy is that it can

only be performed in a facility with muons, and one must overcome the technical difficulties

of the short muon half life. A nice review for muonic atoms is [29].

3.2 Hadronic probes of charge distributions

Hadronic probes can also be used to probe the size of nuclei and to determine their mass

and charge distributions. In these experiments, the strong interaction is the source of the

scattering potential. Now, because the strong force has a short range, the projectile must

be able to come sufficiently close to the target nucleus in order to interact. To do so,

the energy of the collision must be large enough to overcome the coulomb repulsion. One

can envision experiments for α-nucleus scattering, p-nucleus, π - nucleus, nucleus-nucleus

scattering etc. In a manner similar to the EM case, one can measure an interaction cross

section and then determine a nuclear size from the form factors determined from cross section

measurements. In general, hadronic probes yield values for so called matter radii, as they are

sensitive for interactions between the projectile and the target neutrons and protons–with

no discrimination (to the extent that isospin symmetry holds).

For the isotopes of helium, an important set of experiments were performed in 1992 by

Tanihata et al. [158] at Berkeley. They performed their experiment in inverse kinematics,

whereby they used a radioactive beam of helium to scatter off of a fixed carbon target in

order to determine the interaction cross sections σI . From these cross-sections, they were

able to determine the nuclear matter radii. Their results for σI as well as the 2-neutron and

4-neutron removal cross sections are reproduced in table 3.2.

The general observation of their studies is that the interaction cross section increases as
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Table 3.1: Measured interaction cross sections; reproduced from [158]

Reaction Cross section (mb)
σI σ−2n σ−4n

4He + C 503± 5 - -
6He + C 722± 5 189± 14 -
8He + C 817± 6 202± 17 95± 9

one goes from mass 4 to 6 to 8. Furthermore,

σI(
6He)− σI(

4He) ∼ σ−2n(
4He)

σI(
8He)− σI(

4He) ∼ σ−2n(
8He) + σ−4n(

8He)

(3.9)

The relations in equation 3.9 suggested that one could think of 6He and 8He as being com-

prised of a 4He core surrounded by 2 and 4 neutrons respectively.

Alkhazov et al. [5] in 1997, also studied these nuclei. Their experiment was similarly per-

formed in inverse kinematics at GSI, where radioactive beams of helium isotopes of energies

between 674 and 717 Mev/u were made to scatter off of a proton (hydrogen) target. The tar-

get was in the form of a hydrogen filled ionization chamber. It therefore also served as a recoil

detector—yielding excellent acceptance. They reported matter radii Rm(
6He) = 2.30± 0.07

fm, and Rm(
8He) = 2.45± 0.07 fm [5].

The results of Tanihata et. al [158] and Alkhazov et al. [5] are consistent with the picture

that 6He and 8He are halo nuclei. That is, they are weakly bound systems which consist

of an alpha-particle core, surrounded by two and four loosely bound neutrons respectively.

Because the additional neutrons are loosely bound, they are very spatially diffuse, and form a

halo as it were. Such weakly bound systems are particularly challenging for nuclear structure

calculations. Moreover, theories usually calculate the point-nucleon distributions. Derivation

of radii from the measured cross sections depends on models of nucleon distributions and
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Table 3.2: Experimentally determined charge radii in fm for the proton and the isotopes of
helium. There are plans to perform improved muonic helium spectroscopy which will provide
values for 3He and 4He charge radii [10].

Elastic e− scattering µ-atom Spectroscopy Atomic spectroscopy

〈
r2
〉1/2

(fm)

p 0.8772(46) [174] 0.8418(7) [129] 0.883(14) [107]

3He 1.959(30)[8] - 1.9506(14)[147]

4He 1.681(4)[149] 1.673(1)[28] -

6He - - 2.061(8)[165, 31]

8He - - 1.955(17)[114, 31]

interactions. This model dependence introduces additional uncertainties when comparing

with theory. A nuclear model independent determination of the charge radius using methods

of atomic or muonic atom spectroscopy is therefore advantageous.
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CHAPTER 4

NUCLEAR SIZE OF HELIUM FROM ISOTOPE

SHIFT—ATOMIC THEORY

Helium has been an important test case for the application of quantum mechanics in describ-

ing atomic structure. Unlike hydrogen, there is no analytical solution to the non-relativistic

Schroedinger equation. Approximation techniques must be applied in order to account for

the few-body and consequently non-separable nature of the system. In order to test the

calculations of atomic structure, precise experiments must be performed.

Currently, the most precise helium atomic structure calculations are performed by Gor-

don Drake and collaborators, as well as Krzysztof Pachucki, Jonathan Saperstein and col-

laborators. In Drake’s work, the starting point for the calculation is the non-relativistic

Hamiltonian of the form [49]:

H =
~
2

2M
∇2

X − ~
2

2m
∇2

x1 −
~
2

2m
∇2

x2 −
Ze2

|X− x1|
− Ze2

|X− x2|
+

e2

|x1 − x2|
(4.1)

where M is the mass of the nucleus, m, the mass of the electrons. X, x1 and x2 refer to the

coordinates of the nucleus and the two electrons respectively. Transforming to the center of

mass and relative coordinate,

r1 = x1 −X

r2 = x2 −X

R =
MX+mx1 +mx2

M + 2m

r12 = r1 − r2

(4.2)
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they obtain and expression for the Hamiltonian

H = − ~
2

2µ
∇2

r1
− ~

2

2µ
∇2

r2
− ~

2

M
∇r1 · ∇r2 −

Ze2

r1
− Ze2

r2
+

e2

r12
(4.3)

Thus, the non-relativistic Schroedinger equation for the helium atom is of the form

[

−1

2
∇2

1 −
1

2
∇2

2 −
Z

r1
− Z

r2
+

1

r12
− µ

M
∇1 · ∇2

]

ψ = Eψ (4.4)

Writing the Hamiltonian as in equation 4.3 is desirable because the Hamiltonian for an

infinitely heavy nucleus retains this form except for the appearance of the additional ’mass

polarization’ term µ
M
∇1 · ∇2 which appears for a nucleus of non-infinite mass. The mass

ratio therefore appears as a natural expansion parameter [53].

The Schroedinger equation given in equation 4.4 is solved variationally, by writing a trial

wavefunction in Hylleraas coordinates. As Drake et al. report, ground state energies which

are “accurate to one part in 1020, can be obtained for helium and matrix elements for other

corrections such as relativistic corrections, converge to about half as many figures” [53].

Thereafter, additional contributions to the energy levels are added in perturbation theory.

The total energy of an atomic state is given by an expansion in terms of the fine structure

constant:

Etot = Enr + α2Erel + α3EQED + . . .+ Enuc (4.5)

where Enr is the non-relativistic energy, Erel, the leading relativistic correction, and EQED

the leading QED correction [53]. Each of the above contributions to the total energy can
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Table 4.1: Terms added to the non-relativistic Hamiltonian perturbatively and their relative
orders of magnitude in terms of Z (from [49]). For 4He, µ/M = 1.370745624 × 10−4 and
α2 = 0.5325135450× 10−4

Contribution Magnitude Rel. Value

Non-relativistic energy Z2 1

Relativistic corrections Z4α2 10−3

Mass polarization Z2µ/M 10−4

Anomalous magnetic moment Z4α3 10−5

QED correction(Lamb Shift) Z4α3(ln α) + . . . 10−5

Relativistic recoil Z4α2µ/M 10−6

Second-order mass polarization Z2(µ/M)2 10−8

Finite nuclear size Z4 〈r̄c/a0〉2 10−9

also be expanded in terms of the mass ratio µ/M in the form:

Enr = E(0)
nr +

µ

M
E(1)

nr +
( µ

M

)2

E(2)
nr + . . .

Erel = E
(0)
rel +

µ

M
E

(1)
rel + . . .

EQED = E
(0)
QED +

µ

M
E

(1)
QED + . . .

(4.6)

4.1 Finite Nuclear Size Effects

In table 4.1, we reproduce from [49] the different terms which contribute to the energies of

the bound states of helium. As discussed above, the mass polarization term has to do with

the fact that the nucleus is not infinitely heavy. Relativistic corrections account for such

interactions as spin-orbit, spin-spin, spin-other orbit etc. As a result, these corrections to

the energy lead to the fine structure in the spectra of atomic states. The accuracy of the

relativistic corrections can be tested by precise measurements of the fine structure intervals.

28



This has been done for example for 4He on the 3P manifold in our group by Mueller et al.

[115] as well as in our present work for 6He in [114]

If all the terms which are larger than the finite nuclear size effects are well under control

(i.e. calculable to precision greater than the finite nuclear size contribution), then a precision

spectroscopy measurement can be turned around to extract the contribution due to the

nuclear size. The energy difference of a particular transition in two isotopes a, and b of the

same element yields the isotope shift ∆E(a − b). From equations 4.5 and 4.6, we note the

the isotope shift can be written as

∆E(a− b) =
[( µ

M

)

a
−
( µ

M

)

b

] (

E(1)
nr + α2E

(1)
rel + α3E

(1)
QED

)

+

[( µ

M

)2

a
−
( µ

M

)2

b

]

E(2)
nr + . . .+ (Enuc,a − Enuc,b) + . . .

(4.7)

From equation 4.7, we see that the difference in finite nuclear size terms (Enuc,a − Enuc,b)

can be determined if the other terms on the RHS of 4.7 can be calculated with sufficient

accuracy. Subtracting the calculated terms then from the measured isotope shift leaves the

finite nuclear size contributions.

In the case of the helium isotopes, This procedure is possible because the mass inde-

pendent QED correction term α3E
(0)
QED (from equation 4.6) cancels in the isotope shift, as

it is independent of mass and therefore common to all isotopes. The remaining QED term,

µ
M
α3E

(1)
QED can be calculated to sufficient accuracy [53]. By sufficient here, we mean that

the uncertainty on that contribution is much smaller than the size of the finite nuclear size

contribution to the transition energy.

As discussed in [17, 49] and other places, the finite nuclear size correction for low-Z atoms

can be expressed as,
2πZe2

3
|ψ(0)|2

〈
r2
〉

(4.8)
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This dependence can be easily shown by considering the electrostatic energy of a an electron

with wavefunction ψ(r) around a nucleus with a charge distribution ρ(r). Now, assuming

that the electron is in an S-state it has substantial spatial overlap with the nucleus. Because

the spatial extent of the electron wavefunction is so much larger than the typical scale in

the nucleus, i.e. a0 >> RN , the electron wavefunction can be assumed to be constant, ψ(0),

within the volume of the nucleus. As a result, the electrostatic energy of the interacting

charges can be obtained, using Gauss’ law to be the following:

E =

∫

ρ(r)V (r)d3r (4.9)

where

V (r) = −2πe |ψ(0)|2 (R2
N − r2/3) for |r| < RN (4.10)

Thus,

E =

∫

|r|<RN

ρ(r){−2πe |ψ(0)|2 (R2
N − r2/3)}d3r

= V (0)

∫

|r|<RN

ρ(r)d3r +
2πe

3

∫

|r|<RN

r2ρ(r)d3r

(4.11)

Making use of the equations:

∫

|r|<RN

ρ(r)d3r = Ze

∫

|r|<RN

r2ρ(r)d3r = Ze
〈
r2c
〉

(4.12)

we get

E = ZeV (0) +
2π

3
Ze2 |ψ(0)|2

〈
r2c
〉

(4.13)
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where the first term represents the interaction between an electron and a point-like nucleus.

The second term is the finite size correction. It is important to note that in the above

derivation, the only assumption made was that the electron wavefunction ψ(0) was constant

over the volume of the nucleus. No particular form of the nuclear charge distribution ρ(r)

was assumed.

Table 4.2: Calculated Isotope Shifts between 6He and 4He and between 8He and 4He for the
23S1 to 33PJ transition at 389 nm [52]. The theoretical uncertainty in the 8He and 6He mass
shift determination come from the uncertainty in the mass of the respective nuclei. These
reported values make use of the masses in [12] for 6He and [142] for 8He.

6He - 4He

J = 0 : δν6,4 = 43196.157(1) MHz + 1.008 (〈r2〉4 − 〈r2〉6) MHz/fm2

J = 1 : δν6,4 = 43195.897(1) MHz + 1.008 (〈r2〉4 − 〈r2〉6) MHz/fm2

J = 2 : δν6,4 = 43196.171(1) MHz + 1.008 (〈r2〉4 − 〈r2〉6) MHz/fm2

8He - 4He

J = 0 : δν8,4 = 64702.489(1) MHz + 1.008 (〈r2〉4 − 〈r2〉8) MHz/fm2

J = 1 : δν8,4 = 64702.098(1) MHz + 1.008 (〈r2〉4 − 〈r2〉8) MHz/fm2

J = 2 : δν8,4 = 64702.509(1) MHz + 1.008 (〈r2〉4 − 〈r2〉8) MHz/fm2

Condensing all the mass dependent terms in equation 4.7 into a single term, the “Mass

shift” (MS), and the finite nuclear size terms into a “Field Shift”, (KFSδ〈r2〉), we can express

the isotope shift between two isotopes as:

δνa,b =MS +KFSδ
〈
r2
〉

(4.14)

where, δ 〈r2〉 is the difference in RMS charge radius between isotopes a and b.

For our experiment, which will be described in chapter 5, we determined the 6He - 4He
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and 8He - 4He isotope shift for transitions between 23S1 to 33PJ , with J = 0, 1, 2 at 389

nm. The Mass shifts were calculated by Drake et al. to be roughly 43 GHz and 64 GHz for

6He-4He and 8He-4He respectively. The field shifts, on the other hand, are on the order of a

few MHz. The exact values determined for different transitions are reported in table 4.2.

Figure 4.1: Level Scheme for Helium atoms showing the metastable state 23S1, the 23P and
the 33P manifold of states.(Not to scale). The fine structure splittings for 4He to the nearest
MHz calculated by Drake et al [52] are given.
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CHAPTER 5

LASER SPECTROSCOPIC DETERMINATION OF THE

CHARGE RADIUS OF HELIUM 8

In chapter 4, we described how an atomic isotope shift measurement can be used to make

a sensitive determination of the charge radius of an isotope of interest. In this chapter, we

will describe the details of our experiment for doing just that in 6He and 8He. We aim

at measuring the isotope shift of 8He - 4He and 6He - 4He on the 23S1 to 33P2 transition.

Measuring the isotope shift with an error of 100kHz would allow for the determination of the

RMS charge radius with a fractional uncertainty of 1%. In order to perform this experiment,

we must start by finding adequate supplies of 6He and 8He.

5.1 Production and transport of 6He and 8He

The 6He and 8He atoms used for our experiment were produced at GANIL, the Grand

Acceleratueur National d’Ion Lourdes, in Caen, France. We collaborated with A. Villari

et al. at GANIL. Part of their research involves developing intense radioactive beams for

nuclear physics. The GANIL facility consists of five coupled cyclotrons (see figure 5.1). CSS1

and CSS2 together can be used to accelerate a primary stable beam up to energies of 95

MeV/u [36]. Typically a radioactive beam is generated by colliding the primary beam from

CSS2 on a fixed target and re-accelerating a radioactive beam thereafter with CIME.

Since we desired a low energy beam of 8He and 6He, the beam emerging from CSS2 was

directly sent to SIRA (figure 5.1). There, the 13C primary beam with energy 75 MeV/u and

0.4 pµA was delivered to the Nanogan-III Target and ion source system. On colliding with

the 12C target in Nanogan-III, many radioactive isotopes are produced by fragmentation

reactions. In particular, 6He and 8He nuclei were produced with rates of 1 × 108 s−1 and
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Figure 5.1: Schematic showing the general layout of the GANIL facility. Our experiment
was located in the experimental hall outside SIRa. Image obtained from [36]

.

5× 105 s−1 [100, 162].

Because helium is a noble gas, the atoms diffuse out of the porous graphite target quickly,

and effuse into the adjacent ECR ion source. The carbon target was heated to ∼ 200 ◦ C,

which accelerated the diffusion process out. It is estimated that the characteristic time for

the helium atoms to leave the target was ∼ 250ms. Once in the ECR source, the helium

atoms are ionized, predominantly to the 1+ state, and then transported as a 20 keV ion

beam to a mass separator, which selects between 6He and 8He. It was this ion beam that

was delivered to the experimental hall D2. A general schematic of the major components in

the accelerator beam line is shown in figure 5.2.

Since we desired to perform spectroscopy on neutral atoms, we passed the ions delivered

from the ECR source through a thin graphite foil. The ions were quickly neutralized, and the

neutral atoms diffused out of the graphite. The foil was heated to ∼ 600◦ C to accelerate the

diffusion process.The released atoms were pumped into the atomic beam apparatus within
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Figure 5.2: Schematic showing layout of atomic beam line relative to the ion transport
infrastructure after the ECR source.

250 ms with rates of approximately 5× 107s−1 and 1× 105s−1 for 6He and 8He respectively.

A schematic of the atomic beam layout is shown in figure 5.3.

5.2 Laser manipulation of neutral helium atoms

We make use of an atom-trap apparatus to first stop and hold the atoms before performing

spectroscopy on them. The atoms are slowed down using a Zeeman slower, and trapped in

a magneto-optical trap. These work on standard laser cooling principles and are treated in

[108, 65].

In manipulating neutral helium (and other noble gas) atoms with lasers, there is the

challenge that one can not perform laser cooling on ground state atoms because transitions

from the ground state requires light of very short wavelengths. However, it is possible to
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Figure 5.3: Helium atomic beam layout showing the major parts of the vacuum system.
Neutralizer graphite foil is also shown.

laser cool the atoms once they are in the long lived metastable state.

For our experiment, high efficiency of trapping is of paramount importance because the

rates of 8He production are so low. We describe below the various sections of the apparatus—

each of which is optimized to maximize the loading rate of atoms into the MOT.

5.2.1 metastable source

Noble gas atoms in the metastable state are amenable to laser cooling and trapping because

of the accessibility of closed transitions at attainable laser wavelengths from the metastable

state. They have been used in a number of different experimental setups ranging from

trace analysis [37], Bose - Einstein condensation [42], studies of cold collisions, [102], atom
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lithography [6] and studies of Bose-Fermi statistics using Hanbury-Brown Twiss experiments

with atoms [144].

For all these studies, it is important to have an efficient way of populating the metastable

23S1 state. Most groups use either DC or RF discharges. We make use of an RF driven

discharge to excite the atoms into the metastable state. The idea is that in the plasma,

electron-atom collisions have a finite, though small probability of exciting the atoms to the

metastable level. This yields a metastable excitation efficiency on the order of 10−6 to 10−5.

As of date, this is the state of the art of metastable helium production.

As we mentioned in section 5.1, 6He and 8He are transported as ions at 20 keV. The

atoms are then neutralized, and pumped into the atomic beam apparatus. On entry, the

helium atoms are mixed with a carrier gas made up either of krypton (Kr) or xenon (Xe).

We need the additional pressure provided by the carrier gas in order to be able to sustain the

plasma. The metastable discharge source we used is similar to that used in [164, 165]. It is

basically a quarter wave helical resonator, which operates at a fundamental frequency of ∼

80 MHz. A schematic drawing of the discharge source is given in figure 5.4. Such resonators

are particularly useful because they are able to sustain plasma discharges at relatively low

residual pressures [103]. We cool the discharge by liquid nitrogen(LN2), which is made to flow

into a reservoir which is in contact with a ceramic tube that conducts the gas. This serves

to reduce the effective temperature of the beam that is released into the Zeeman slower. Xe

as a buffer gas yields a slightly (×1.4) better metastable yield than Kr. For tuning, we used

mostly Kr because of the higher cost of Xe. We used Xe during the experimental run.

5.2.2 Vacuum system

The atomic beam line that we used was ∼ 2 meters in length, and is shown in figure 5.3.

A combination of two turbo pumps (pumping speed 250 L/s and 300 L/s) pumped out
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Figure 5.4: Schematic of RF discharge Source used for creating metastable helium atomic
beam. (All dimensions are in inches)

the transverse cooling chamber. Thereafter, we had a conductance limiter, between the

TC chamber and a four-way cross, which had a third turbo pump of 250 L/s. We used a

Leybold 381c turbo pump to evacuate the MOT chamber. The equilibrium pressure of the

MOT chamber was ∼ 5 × 10−8 Torr. This resulted in a vacuum limited MOT lifetime of a

few hundred milliseconds — longer than the half life of 8He (118 ms).

5.2.3 Laser systems

We operated two independent laser systems for this experiment. For slowing and loading

of atoms into a magneto-optical trap, we made use of the transition 23S1 → 23P2 at 1083

nm. The 23S1 mJ = 1 → 23P2 mJ = 2 transition is cycling, and therefore suitable for laser

cooling with circularly polarized light. For spectroscopy, we made use of the 23P1 → 33PJ at

389 nm. The detection efficiency of 389 nm light using PMTs is really high. Furthermore,
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Figure 5.5: Schematic of the MOT magnetic coils. The coils are made of copper tubing—
which is also the conductor for water cooling. The pair of ports at 14 degrees to the vertical
ports were used for the spectroscopy beam, while on the horizontal plane, we had the MOT
and slower beams as well as the MOT imaging optics, which are shown on the right. The
interior of the vacuum system was painted black in order to minimize the background from
scattered light.

1083 nm light can be easily separated from 389 nm light using interference filters. As such,

the trapping light did not contribute the background.

1083 nm laser system

For laser cooling, it was important that the 1083 nm light was locked to the resonant fre-

quency of the helium atoms. It was also important to have enough power to distribute for

slowing the atomic beam, operating the MOT and transverse cooling. These three different

tasks also required independent frequency and amplitude control.

We generated 1083nm light from a home made diode lasers which were amplified by fiber

amplifiers from Keyopsys. The diodes were from Toptica, Model LD-1083-0075. The setup

is shown in figure 5.7. We made use of two lasers, designated as DL1 and DL2. DL1 is locked

to one of the modes of a hermetically sealed Fabry-Perot cavity with FSR = 300 MHz. At

the same time, light from DL1 is used to perform saturation spectroscopy in a helium vapor

cell. The length of the cavity is stabilized to the atomic resonance of either a 3He or 4He

saturation spectroscopy resonance. Finally, DL2, after double passing AOM1, is also locked

to the same cavity, albeit to a different mode. Consequently, by scanning the frequency of
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Figure 5.6: Level Scheme for Helium Showing the 1083 nm and 389 nm transition. The 1083
nm transition to J = 2 is used for cooling. We excite transitions to each of the three fine
structure levels in the 33P manifold for spectroscopy.

AOM1, and by changing the mode to which DL2 is locked, we can change the frequency of

the 1083nm light that is sent to the fiber amplifiers and eventually to the experiment. The

frequency difference between the two lasers is precisely determined by measuring the beat

frequency of the interference of the two lasers.

As shown in figure 5.7, we had independent control of frequencies of the light going to

the MOT, slower and transverse cooling. In order to switch isotopes, we locked DL1 to a

different line in the helium vapor cell, and also changed the offset frequency shift given by

AOM1 in figure 5.7. Amplifier 1 supplied up to 4 Watts of light which was distributed to

the transverse cooling and slower. Fiber amplifier 2 supplied 1 W, and its output was used

to create the MOT.
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Figure 5.7: Setup of optics used for generating 1083 nm light.

389 nm laser system

For spectroscopy, we generated 389 nm light by frequency doubling 778nm light. The layout

of the table is shown in figure 5.8. This layout is similar to the layout used in [164]. Once

again, we use a transfer lock using a cavity to lock DL1 to a saturation spectroscopy feature

of iodine. A second diode laser at 778 nm (DL2) is also locked to the same 200 MHz cavity

after double passing an acousto-optical modulator, (AOM1 in gigure 5.8). Its frequency is

then tuned by scanning AOM1. Light from DL2 is used to injection lock another diode

laser, DL3. The output of DL3 is then amplified by sending it to a tapered amplifier and

then frequency doubled using an LBO crystal in a doubling ring cavity. The 389 nm light

output from the doubling ring was then double passed through an AOM2 which had a center

frequency of 100 kHz. The emergent first order beam was therefore shifted up by 200 kHz.

By scanning that AOM, we therefore scanned the frequency of the laser. Typically, we had
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approximately 1 mW of 389 nm light available for spectroscopy. The exact frequency of the

lasers was determined by measuring the beat note between DL1 and DL2.The exact value of

the beat frequency depended on the transition (and isotope) we were measuring. Its value

varied from 0 up to 20 GHz. The relative positions of the 23S1− 33P2 lines for 4He. 6He and

8He are shown with respect to an iodine line with wave number 12854.92 cm−1 (i.e. 777.91

nm).

Figure 5.8: Setup of optics used for generating 389 nm light.

5.2.4 Transverse cooling

We employed a stage of transverse cooling of the metastable beam that emerged from the

RF discharge source. The basic idea of transverse cooling is that by laser cooling a divergent

atomic beam in the direction transverse to its motion, we are able to collimate it and increase

its forward brightness. One improvement that we made on the system over that used in

[164, 165] is that we made use of a longer transverse cooling section. The length of the TC
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Figure 5.9: Lock point of spectroscopy with respect to an molecular iodine line. DL1 was
locked to the Iodine line, while DL2 was scanned to either the 4He, 6He or 8He resonance.
We kept track of the absolute frequency by measuring the beat frequency between DL1 and
DL2

mirrors was increased from 4" to 7". Furthermore, one of the mirrors, in each dimension

used to set up the retro-reflecting pattern of the transverse cooling beam was placed inside

the vacuum system with adjustability. In the old design, the mirrors were fixed.

All in all, we obtained an increase in the loading rate of the MOT from the transverse

cooling stage of a factor of 100. This was a factor of 4 improvement over the older transverse

cooling scheme. All these improvements were performed in order to improve the overall

trapping efficiency of the system.

5.2.5 Zeeman slower

We made use of a Zeeman slower in order to successfully slow down an atomic beam from

a thermal energy of 77 K (from the LN2) to the capture velocity of the trap. At 77 K, the

most probable velocity of 8He atoms is 400 m/s. The basic idea of a Zeeman slower is that

because laser cooling relies on the resonant scattering of photons, this force exerted by the
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light is only substantial once the atom is near resonance. Now, as an atom is slowed down,

its Doppler shift becomes significant, and could even exceed the natural line width of the

transition. In order to compensate for this, one must restore the resonance condition. This

can be done by either changing the frequency of the laser (i.e. chirping the laser), or by

changing the transition frequency using the Zeeman effect.

In order to maintain resonance for a beam being slowed down from 77K, we engineered

a spatially varying magnetic field of the form:

B(z) = Bmax

√

1− z
amax

v20
(5.1)

where

Bmax =
h

µBλ
v0 (5.2)

and v0 is the capture velocity of the slower. v0 is of course a function of the maximum

acceleration imparted on the atom by the scattered photon amax, the length of the slower L

and the final velocity vf .
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Figure 5.10: The left panel shows the calculated magnetic field profile for the Zeeman slower
optimized to trap the three different isotopes. On the right panel, we show the calculated 6He
profile for the slower and MOT, along with the measured magnetic field. Figure reprodued
from [164]. For the measurements reported here, the slower was operated in the setting
shown for 8He.
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The Zeeman slower used for the experiment is identical to the one used in [164, 165]. It

consists of two tapered solenoids such that there is a zero field crossing at approximately

100cm (shown in figure 5.10). The field was mapped after the coils were wound and found

to be consistent to the design. Given that there were 3 independent coils, we were able to

tune the slower to optimize the loading rate of different isotopes by changing the relevant

set points of the currents which we supplied to the coils.

We also made use of a match coil, and a trim coil in order to create a smooth transition

from the large fields in the slower to the zero field required for the MOT.

For the spectroscopy measurements, we operated the zeeman slower at a setting optimal

for 8He. In switching isotopes, we did NOT switch the slower. This is in order to keep the

magnetic fields at the trap the same for all isotopes—avoiding possible systematic effects.

5.2.6 Magneto-optical trap of metastable helium

The principle of operation of a magneto-optical trap is described in detail in [108, 65]. Here,

I will simply summarize some of the specifics of our magneto-optical trap for metastable

helium. As mentioned above, the transition at 1083 nm is used for laser cooling of helium.

Since the 6He and 8He atoms are of such low abundance, the MOT is set up in order to

optimize the loading rate. We refer to this configuration as the ’Loading Mode’. Once an

atom is detected in the MOT, the state of the system is changed to the ’Spectroscopy Mode’.

Here, we operate the MOT in such a way whereby the spatial extent of the MOT is highly

reduced—ensuring that the fluorescence of the atom in the trap is efficiently collected. We

achieve this reduction by changing the detuning and intensity of the MOT light. The exact

values of detuning and intensity are given in table 5.2.

While awaiting the arrival of, say a 8He atom, we had a resonant 389 nm beam illuminat-

ing the MOT center. The trigger was implemented in software. We kept a running average
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Table 5.1: Calculated Parameters relevant for Laser cooling of helium for the 1083 nm and
389 nm transitions

.

Parameters 23S1 − 23PJ 23S1 − 33PJ Units / Description

λ 1083 389 (nm) Transition Wavelength
k = 1/λ 9223 25706 (cm−1) Wavenumber

τ 98 106 (ns) Atomic State Lifetime

σge = 3λ2/2π 560 72 (10−15 m2) Absorption cross section

Γ = 1/2πτ 1.62 9 (MHz) Natural linewidth

Is = πhc/3λ3τ 0.16 3.33 (mW/cm2) Saturation Intensity

TD = hΓ/2kB 38 36 (µK) Temp limit of Doppler cooling

vr = ~k/M

12 34 3He
Recoil velocity

9 25 4He
6 17 6He

(cm/s)
4 12 8He

VD =
√

kBTD/M

10.8 9.9 3He
Doppler Limit Velocity

8.1 7.4 4He
5.3 4.9 6He

(cm/s)
4.0 3.7 8He

ωr/2π = ~k2/4πM

56 439 3He
Recoil frequency

42 329 4He
28 219 6He

(kHz)
21 164 8He

amax = ~k/2Mτ

62 174 3He
Maximum Acceleration

46 130 4He
31 87 6He

(104 m/s2)
23 65 8He

Tr = ~
2k2/MkB

5.6 43 3He
Recoil Temperature

4.2 32 4He
2.8 21 6He

(µK)
2.1 16 8He
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Table 5.2: Conditions of ’Loading’ and ’Spectroscopy’ modes of operation. Note that the
389 nm beam is + 5MHz detuned during the loading phase. This ensures that the transition
is resonant when one accounts for the AC Stark shift due to the trapping light

Loading Mode Spectroscopy Mode

MOT Detuning (∆/2π) -20 MHz -3 MHz

MOT Intensity 70 Is (CW) 5 Is (chopped, 100 kHz

80% ON duty cycle)

Slower Detuning (∆/2π) (-512,-418,-362) MHz
Off

for 4He, 6He and 8He

Slower Intensity 100 Is

389 nm Detuning (∆/2π) +5 MHz Scanning

389 nm Intensity ∼ 1 Is (CW) ∼ 1 Is (chopped, 100 kHz

20% ON duty cycle)
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Figure 5.11: Schematic for difference between (a.) Loading mode, where the 1083nm light
for the MOT is on and (b.) Spectroscopy mode, where 1083 nm light is off, and 389 nm
light is on. Note that in both cases, the magnetic field is kept on. We make use of a cat’s
eye retro reflector arrangement, with a lens on a translation stage. We adjust the position
of the lens to ensure balanced intensities of the 389 nm beam.

of the singles rate from our PMT sensitive to 389 nm light. Upon the arrival of an atom, we

noted an increase in the count rate. However, there were also false events due to the PMT

detecting neutrons which were generated by the operating cyclotron. Those signals from the

neutrons were usually stronger than the atom signals, and also very short lived (∼ 1 ms).

We therefore required that a real event consists of counts greater than background, but lower

than the neutron level, and that the elevated rate persisted for 50ms. When those conditions

were satisfied, we changed modes to spectroscopy mode. We detected the presence of a single

atom signal with a signal to noise ratio of 10 within 50 ms of integration.
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5.3 Spectroscopy of trapped helium atoms

Recall from the introduction of this chapter that our goal was to perform spectroscopy on

the 23S1 to 33PJ transitions in 4He, 6He and 8He and to determine the isotope shifts on those

transitions.

Once the system was in spectroscopy mode, the 389 nm laser was scanned continuously

around the resonance over a span of ±9 MHz around the resonance of interest. The total

scan took ∼ 6µs. A schematic of the timing used during spectroscopy mode is shown in

figure 5.12.

Anticipating the need to understand certain systematic errors, we measured the spectra

(for 4He and 6He) under varying probe intensity levels. This will be discussed in detail in

section 5.7. We describe below in some more detail the steps taken for data collection.

Loading Mode

(Awaiting Next Atom)
Spectroscopy Mode

Figure 5.12: Timing Scheme for chopping and trapping. On Detecting a single atom in the
trap, the system is switched to spectroscopy mode where an 8.333 MHz counter starts. The
counter is phase locked with 83.33 kHz frequency that generates ramp for frequency of 389
nm light. Subsequently detected photons trigger the readout of the counter.
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5.4 Data collection

Each atom arrival trigger event initiated

(i) The switch from Loading to Spectroscopy mode

(ii) The start of an 83.333 kHz triangular ramp, used to control the voltage of the 389nm

AOM which effectively changes the frequency of the 389 nm laser.

(iii) The start of an 8.333 MHz counter, which serves as a clock used to encode photon

arrival times.

In spectroscopy mode, the frequency of the 389 nm light is being scanned. Subsequently

detected 389 nm photons trigger a readout of the clock pulses.The data was stored as a series

of time stamps of photon arrival for each trigger event.

5.4.1 Measurement procedure

During each run, we cycled between the three helium isotopes in a procedure outlined in

table 5.3. On average, during each run, we spent about 15 minutes on 4He and a similar

interval of time on 6He. We operated the trap under conditions where the loading rate

was similar between 4He and 6He. We achieved this loading rate for 4He of a few atoms

per second by operating the system with no transverse cooling as well as with a very small

diameter slowing beam. Furthermore, for these two isotopes, we studied the dependence of

the fluorescence peak center on the intensity of the probe light. This is because a large class

of systematic errors such as mechanical effects of the light, heating/cooling effects, power

broadening etc. scale with the intensity of the light being used to illuminate the atoms.

For 8He, we accumulated data until we had recorded the capture of ∼ 60 atoms. This

took between 2 - 3 hours. Because of the comparably low loading rate, we only performed

50



spectroscopy at the highest intensity setting of the probe light. In quantifying possible

systematic errors due to the intensity of the light, we make use of the results from 4He and

6He. This will be treated more in section 5.6.

The switching procedure between isotopes involved re-locking both the trapping and

spectroscopy lasers to the set point of the desired isotope. This typically took around 10

minutes.

Table 5.3: Measurement procedure during a run

Isotope 389 nm Power Level Time

4He
70 µW

15 Minutes100 µW

900 µW

SWITCH ISOTOPE 10 Minutes

6He
70 µW

15 Minutes100 µW

900 µW

SWITCH ISOTOPE 10 Minutes

8He 900 µW 2 - 3 Hours

5.4.2 Fine structure interval measurements

Recall that for the even isotopes of Helium, the 33P manifold is split up into three fine

structure levels namely 33P0, 33P1 and 33P2. Over the course of the experiment, we were

able to excite and consequently measure the frequency of the following transitions:

(a) 23S1 − 33P2 for 4He, 6He and 8He
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(b) 23S1 − 33P1 for 4He, 6He and 8He

(c) 23S1 − 33P0 for 4He and 6He. We did not record this spectrum for 8He because it was

very weak and would have required long integration times in order to get an adequate

signal to noise ratio.

5.5 Data analysis

5.5.1 Applying atom cuts

Whenever the trigger condition was satisfied, we wrote all the photon arrival times to file.

Of course, not all events were true atom events. Considering that the 1/e lifetime of the

trap was a couple hundred milliseconds, and that the half life of 8He is 119ms, we applied

cuts on the data based on the total number of detected photons during a 12 µs period—the

period for a complete sweep over the scan range of the 389 nm laser. In figure 5.5.1, we show

a sample of the raw data obtained, as well as the result of setting a cut of greater than 30

detected photons. We applied this same cut on all the data that we analyzed.

In figure 5.5.1, the spectrum obtained arises from the spectroscopy laser traversing over

the resonant frequency twice. Once with the frequency increasing and once with the fre-

quency decreasing.

5.5.2 Converting time bins to frequency

The raw data is written to file as series of 389nm photon arrival times. For each data point,

we recall the frequency of the scanning AOM which scans around the resonance by mapping

the photon arrival time stamp with the AOM frequency. The scanning AOM is controlled by

a function generator which is locked to the same frequency reference that generates the clock

for the photon arrival times. We verify the long term stability of the AOM by performing a
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Figure 5.13: The top panel shows the raw histogram obtained from all single photon events.
We further applied cuts on all events that had less than 30 photons detected during the 12
µs period associated with a scan.

voltage to frequency calibration every day.

Over the course of one run, we observed a VCO drift of < 400 Hz, due to fluctuations

in the control voltage.
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Figure 5.14: Frequency scan across the 8He resonance showing two peaks, one each for the
frequency increasing and decreasing with time. Error bars shown are the statistical error
bars due to photon shot noise.

5.5.3 Power dependence of the resonant frequencies

Once we have converted the time bins to frequency, we next perform a least squares fit to

each line to a voigt profile. We treat the line with ascending frequency independently with

the line with descending frequency. The number of points at each frequency setting are

weighted statistically. We obtain fits to each line with a typical χ2/dof ∼ 1.2.

A spectrum is taken for 3 different settings of the intensity of the probing beam. Data

for 4He and 6He is shown in figure 5.15. We observe that the extracted resonant frequencies

do indeed depend on the intensity of the probing light. This might be due to the mechanical

effects of the probing laser. By extrapolating to the condition of zero probing intensity, we

expect shifts associated with pushing or heating by the 389 nm light to tend to zero. Our

analysis procedure with respect to the power dependence is as follows:
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Figure 5.15: The resonance frequency as a function of the probing power of two representative
transitions in 4He and 6He. This data was taken during each 4He and 6He run. As can be
seen, their relative slopes are comparable.

1. For 4He and 6He lines, we measure the line centers under 3 different conditions. The

final value of that transition is the zero intensity intercept.

2. For 8He, we measure the transition frequency with a probe beam of 700µm. An effec-

tively zero intensity value of the peak center is obtained for the 8He measurement by

correcting the value using the power dependent slope obtained from 4He and 6He.
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5.6 Statistical error analysis

5.6.1 Photon counting

In figure 5.5.1, we show a pair of spectra obtained for 8He. As a first step in our data

and error analysis, we perform a least squares fit to a voigt profile (with a fixed Lorentzian

width) in order to determine the line center. Each point is simply weighted by photon

counting statistics (i.e. photon shot noise). The χ2 in each of such fits was typically χ2 ∼ 1.3

per degree of freedom. This suggests that there might be additional sources of of random

fluctuation in the data during the course of accumulating data. Some parameters in our

setup that we expect to drift over the period of a measurement are considered next.

5.6.2 Probing laser alignment

One source of random scatter in our measurements of the resonance frequencies of the tran-

sitions we were studying, we believe, comes from the relative balance between the downward

and the retro-reflected 389 nm spectroscopy beam. This beam is incident on the atoms at

an angle, 14 degrees to the vertical. This is shown in figure 5.5. Now, if the beams are

imbalanced, we would expect that the trapped atoms would be pushed in the direction of

the vertical beam; either upwards or downwards, depending on which direction had the more

intense beam.

Since the second return beam had to go through an optical view port two times more

than the downward going beam, its power is expected to be lower. However, we ensure that

the intensity of the two beams is the same by focusing the return beam slightly. We do so by

adjusting the position of the lens in the cat’s-eye reflector—thereby changing the focusing

of the reflected beam.

We determined that we were in a balanced configuration by the following procedure. For
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each setting of the cat’s-eye reflector, we measured and plotted the line center frequency

vs probing light intensity. The setting which had the minimal slope corresponded to the

balanced upward and downward going beams. In figure 5.16, we show a series of the slopes

of the frequency vs power determined for 4He immediately followed by a similar measurement

for 6He which were taken throughout the duration of the experiment. Each measurement is

separated from the adjacent one by ∼ 4 to 5 hours. Over the course of the run, we noticed

that the slope of the two isotopes were roughly correlated with each other. It is important

to note that there is no statistically significant difference between the average slope for the

power dependence of 4He and 6He.

The 389 nm light is free space coupled around three-meter distance from the laser table

to the atomic beam line from which it is coupled down to the atoms in the vacuum chamber.

For spectroscopy on 6He, we obtained data in a rather short period of time. As a result,

we extrapolated the measured frequency to zero intensity—allotting little uncertainty to

fluctuations in the pointing of the probe beam. For the spectroscopy of 8He however, we

obtained data over a substantially longer period of time. We allotted uncertainty in the

isotope shift between 8He and 4He of 12 kHz, due to the fluctuation of the pointing of the

389 nm probe beam.

5.6.3 Reference laser frequency drift

The final source of statistical error that we consider in our error budget is statistical fluc-

tuations of the reference frequency of the spectroscopy light. Recall that the long term

stability of the 389 nm light is obtained by locking the fundamental frequency at 778 nm to

a saturation spectroscopy peak in iodine. One source of random fluctuations in the 389 nm

frequency could therefore come from fluctuations in the lock to the iodine reference.

An additional source of frequency drift that we must have under control is frequency drift
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Figure 5.16: The variation of the slope of the resonance frequency vs. probe beam power
over the course of the run. There appear to be low frequency drifts in the magnitude of the
slope. We believe this is due to the fluctuation in the probe beam pointing

due to the fluctuation of the control voltage for the AOM used to perform the fast scan of

the 389 nm light across the atomic resonance. Once again, because we are able to acquire

data for 6He over a time short compared with the time scale for frequency drift, we allot an

uncertainty of 2 kHz for 6He and of 24 kHz for the 8He field shift.
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Table 5.4: Experimental isotope shifts δνA,4 (including recoil correction) for the different
transitions in 6He and 8He. All values are in MHz. The errors given in parentheses for δνA,4

and δνFSA,4 include only statistical uncertainties.

Transition δνA,4
6He 2 3S1 → 3 3P0 43196.740(37)

2 3S1 → 3 3P1 43194.483(12)

2 3S1 → 3 3P2 43194.751(10)

8He 2 3S1 → 3 3P1 64701.129(73)

2 3S1 → 3 3P2 64701.466(52)

5.7 Systematic error analysis

5.7.1 Probing power shift

The 8He “zero intensity” line center frequencies are determined by extrapolating from the

values of the measured power dependence of 4He and 6He. As no such correction has to

be applied to the 6He-4He IS measurement, there could be an associated systematic error

which would affect the 8He - 4He IS measurement alone. Given that the slope of the power

dependence is ∼ 100 kHz/mW, and the measurements for 8He are performed with probe

powers of ∼ 700 µW, we make a correction to the 8He line center frequencies of 70 kHz and

allot an uncertainty 15 kHz due to that correction.

5.7.2 Zeeman shift

A systematic uncertainty is caused by Zeeman shifts that might have varied among isotopes

if the atoms were not located exactly at the zero B-field position of the MOT. Limits on this

effect are set conservatively at < 30 kHz for the 6He - 4He isotope shift, and < 45 kHz for

8He - 4He.
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Figure 5.17: Sample spectra for 4He, 6He and 8He taken on the 2 3S1 → 3 3P2 transition at a
probing laser intensity of ∼ 3× Isat. Error bars are statistical uncertainties, the dashed lines
represent least squares fits (with the listed reduced χ2) using Voigt profiles. The apparent
peak broadening towards lower masses is due to the 1/

√
m scaling of the residual Doppler

width.

5.7.3 Nuclear mass

Uncertainties due to the determination of the nuclear mass of 4He, 6He and 8He affected our

experiment via the mass shift calculations reported in table 4.2. The mass shift uncertainties

amount to 15 kHz and 74 kHz respectively. We allot those values as systematic uncertainties

due to nuclear mass determination in what we quote for the field shift.
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Since the publication of our result, the mass of 8He [142] has been measured with almost

a factor of 10 improved precision. The values charge radius values reported in this thesis

take the newly measured masses into consideration. As a result, the uncertainty in the mass

shift due to the nuclear mass is greatly reduced.

5.8 Corrections to the isotope shift

5.8.1 Photon recoil

This is a correction that we make to the measured field shift of each isotope. It arises

from the fact that when a photon is absorbed or emitted, energy-momentum conservation

requires that the atom receive a recoil equal in magnitude to that of the emitted or absorbed

photon, given by frec = hk2/2M . This is accurately calculated. It is very important for

helium atoms because they are very light. It is especially important for an isotope shift

measurement because the recoil correction is mass dependent. For example, 8He - 4He,

frec = 165 kHz and 6He - 4He, frec = 110 kHz

5.8.2 Nuclear polarization

The nuclear polarization correction correction and uncertainty associated with it refers to

the extent to which the nucleus is polarized by the electric field generated by the atomic

electrons [120]. This nuclear polarization can lead to a perturbation of the energy level of

the energy levels being measured. In 6He for example, the nuclear polarizability correction

is ∼ 0.35% of the finite nuclear size effect [120].

Nuclear polarizabilities can be extracted from the nuclear E1 transition matrix element.

The are characterized by the so called ‘ B(E1) values’. An example of the nuclear polariz-

ability determination using B(E1) values is provided in [91]. Pachucki et al in [120] compute
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Figure 5.18: Experimental isotope shifts relative to 4He from the individual measurements
for 8He (a) and 6He (b). As expected, the isotope shift depends on the J of the upper
3 3PJ state. However, the extracted field shift values plotted in (c) show no systematic J
dependence for either isotope. The horizontal lines in (c) mark the weighted averages and
statistical error bands of the field shift.

corrections to helium atomic levels. We apply those corrections, namely 0.014(3) MHz and

-0.002(1) MHz for the field shifts of 6He and 8He respectively. A nice discussion of nuclear

polarizabilities and their impact on finite nuclear size determination from spectroscopy is

given in [134].

5.9 Results

In table 5.6, we give the error budget, summarizing our estimate of the statistical and

systematic uncertainties.

δνFS for 6He = −1.432± 0.031 MHz

δνFS for 8He = −1.006± 0.067 MHz

(5.3)

62



Table 5.5: Weighted averages of the experimental isotope shifts δνA,4 (including recoil cor-
rection) for the different transitions in 6He and 8He. The field shift δνFSA,4 = KFS δ〈r2〉A,4 was
calculated for each transition using the listed theoretical mass shift values δνMS

A,4. All values
are in MHz. The errors given in parentheses for δνA,4 and δνFSA,4 include only statistical
uncertainties.

Transition δνA,4 δνMS
A,4 δνFSA,4

6He 2 3S1 → 3 3P0 43194.740(37) 43196.157 -1.464(37)

2 3S1 → 3 3P1 43194.483(12) 43195.897 -1.460(12)

2 3S1 → 3 3P2 43194.751(10) 43196.171 -1.466(10)

8He 2 3S1 → 3 3P1 64701.466(52) 64702.098 -1.053(52)

2 3S1 → 3 3P2 64701.129(73) 64702.489 -0.979(73)

Table 5.6: Statistical and systematic uncertainties and corrections on the combined results
for the field shifts of 6He and 8He relative to 4He. All values are in MHz.

6He 8He
value error value error

Statistical

Photon counting 0.008 0.032

Probing laser alignment 0.002 0.012

Reference laser drift 0.002 0.024

Systematic

Probing power shift 0.015

Zeeman shift 0.030 0.045

Nuclear mass 0.001 0.001

Corrections

Recoil effect 0.110 0.000 0.165 0.000

Nuclear polarization -0.014 0.003 -0.002 0.001

δνFSA,4 combined -1.432 0.031 -1.006 0.067
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With the field shifts determined for an isotope of mass number A, we then make use of

the expression

δνFS = −1.008 MHz/fm2 ×
(〈
r2
〉

A
−
〈
r2
〉

4

)
(5.4)

and the value 〈r2〉1/2ch = 1.681(4) fm, for the 4He helium charge radius [149] to obtain

δ
〈
r2
〉

6,4
= 1.420± 0.031 fm2

〈
r2
〉1/2

for 6He = 2.061± 0.008 fm

(5.5)

and

δ
〈
r2
〉

8,4
= 0.998± 0.067 fm2

〈
r2
〉1/2

for 8He = 1.955± 0.017 fm

(5.6)

5.10 Implications of Measurement

With the results reported in section 5.9, we now have a complete set of experimentally

determined charge radii of nuclei on the helium isotopic chain using the atomic spectroscopy

method. These are given in table 5.7 below.

Property 3He 4He 6He 8He Units

δ 〈r2〉A,4 1.059(3) − 1.420(31) 0.998(67) fm2

〈r2〉1/2ch 1.967(7) 1.681(4) 2.061(8) 1.955(17) fm

Table 5.7: RMS radii of the helium isotopes determined using the isotope shift method. The
value for 6He and 8He are the results of this work, while the value for 8He is from [147]

As we mentioned in chapter 2, one of the primary motivations of this work was to test

the ab initio nuclear structure calculations on the neutron-rich helium isotopes. Caurier and
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Navratil [35] and Pieper and Wiringa [126] used two sets of different ab initio potentials

and many-body techniques to describe the helium isotopes. Recall that the different nuclear

potentials as well as the many-body approaches were described in section 2.2. With the

charge radius determination along the isotopic chain complete, we can consider the trends

as one moves from 3He to 4He to 6He to 8He. We therefore hope to address the following

two questions:

1. How well do the different ab initio nuclear structure approaches describe the experi-

mentally measured charge radii?

2. How do we understand the trend in nuclear size? In particular, the RMS radius of 3He

is greater than the RMS radius of 4He and 8He, whereas 6He is larger than the other

three?

5.11 Comparison with nuclear theory

In figure 5.19, we plot the results of the experimentally determined RMS radii of 6He and

8He and compare them with the predictions from [35]. There, the authors made use of the

No Core Shell Model (NCSM) approach with both the CDBonn and INOY potentials. The

RMS radii are plotted against the corresponding two-neutron separation energies because

the nuclear size and neutron separation energies are highly correlated. This correlation is

especially pronounced in the case of nuclei with loosely bound ‘halo’ nuclei such as 6He and

8He. This is well reviewed in the article [4].

For 6He, the CDBonn potential does a better job of reproducing the experimental value

of the two-neutron separation energy and charge radius than the INOY. Both potentials

however yield a stable 6He against breakup into 4He and two neutrons. This is not the case

for 8He. There, only the INOY potential yields a stable configuration, against breakup to
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Figure 5.19: NCSM predictions for charge radii and separation energies obtained from [35].

6He and two neutrons. On the other hand, while the CDBonn potential yields an RMS

radius which agrees well with the experiment, there is poor agreement with experiment in

the case of the INOY potential. It therefore appears that the CDBonn potential yields an

under bound 8He, and very likely 6He as well. This is in fact not surprising, as the CDBonn

consists of only the two-body force, and, as we discussed in section 2.2.1, the three-body

force is required to allow for the binding of nuclei with A ≥ 3. No three-nucleon forces are

incorporated. The INOY was studied because of the idea that the short range non-localities

introduced in the potentials would incorporate the effect of the three (and higher) body

forces between nucleons [35].

While it is conceivable to perform a NCSM calculation using the CDBonn potential—

augmented with a ‘three-body’ force, the computational challenges are significantly increased

and have not currently been done for the helium nuclei. The results from [35] then indicate

the limit to which the INOY potential, captures the essential interactions that govern the

properties of the neutron-rich helium isotopes.

Pieper and Wiringa, in [126, 125] used the Greens Function Monte Carlo approach along
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with the Argonne v18 + Illinois series of 3 body forces to describe the helium isotopes. A

correlation plot of the calculated RMS charge radii for 6He and 8He along with the two-

neutron separation energies S2n obtained from those calculations is shown in figure 5.20.

Two different three-body forces were used in their calculations; namely the Illinois-2 and the

Illinois-6. The parametrization are described in more detail in [126].

We note that because of the variational nature of their calculation, every calculation has

a slightly different initial wavefunction. Consequently, the initial spread of the starting wave

function leads to the final distribution of the observables of interest. This spread was used

to assign the theoretical uncertainty in a manner described in [126]

Figure 5.20: GFMC predictions for charge radii and separation energies obtained from [126].
Note the difference in scale between this and figure 5.19

As is evident from the correlation plot in figure 5.20, the GFMC calculations with Argonne

v18 + IL6 yield 6He and 8He nuclei which are bound against break-up to 4He + 2n and 6He

+ 2n respectively.
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5.11.1 Charge Radii Trends

Now that the charge radii of all the helium nuclei have been determined, we can consider

the trend as we move from A = 3, to A = 8. This is shown in figure 5.21.
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Figure 5.21: Charge radii for the helium isotopes.

Property 3He 4He 6He 8He Units

EB 7.718 28.296 29.268 31.408 MeV

EB/A 2.572 7.073 4.878 3.926 MeV

Sn 7.718 20.577 1.860 2.574 MeV

S2n - - 0.972 2.140 MeV

Sp 5.493 19.813 22.590 24.830 MeV

Table 5.8: Binding energies and associated properties of the helium isotopes. The binding
energy EB, binding energy per nucleon EB/A, one neutron Sn, two neutron separation energy
S2n and proton separation energy Sp of the helium isotopes are given. Values obtained from
[11, 12]

We see that the charge radius of the stable nuclei 3He is larger than 4He. As we go up

in mass, we note that the 6He charge radius is larger than that of 4He. The 8He charge
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radius is similarly larger than 4He, though it is notably smaller than 6He. In making sense

of this trend, we recall that the charge distribution is given mostly by the protons, and that

all four isotopes have the same number of protons. One working picture of 6He and 8He is

that they are systems with two and four valence neutrons which surround an alpha particle

core. Such neutrons would form a halo as has been suggested from the interpretation of

scattering results by Tanihata et al. [158] and Alkhazov et al. [5], as described in section

3.2. A larger charge radius can therefore arise as a consequence of the motion of the alpha

particle core about the center of mass of the system. If that is the case, then the extent

of this motion about the center of mass depends on the spatial correlation of the valence

neutrons in the halo. For example, a configuration where the neutrons are symmetrically

distributed in space on opposite sides of the alpha particle would lead to a smaller motion

of the core than if the two neutrons were correlated such that there was a tendency that the

two neutrons are closer to each other.
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Figure 5.22: Calculated density distributions from [126].

Another mechanism that could lead to enhanced charge radii for some isotopes is that

perhaps the alpha particle is significantly perturbed by the presence (or absence in the case

of 3He) of the additional neutrons. To answer that question, Pieper and Wiringa calculate

the function ρpp, which is proportional to the probability of finding two protons a given
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distance apart. Recall in section 2.1, that we defined the point proton distribution

ρp(r) =
1

4πr2

〈

ΨN

∣
∣
∣
∣
∣

A∑

i

1 + τiz
2

δ(r − |ri −Rcm|)
∣
∣
∣
∣
∣
ΨN

〉

(5.7)

As given in [128], the proton-proton distribution function is similarly defined as

ρpp(r) =
1

4πr2

〈

ΨN

∣
∣
∣
∣
∣

A∑

i<j

1 + τiz
2

1 + τjz
2

δ(r − |ri − rj|)
∣
∣
∣
∣
∣
ΨN

〉

(5.8)

An important point is that ρpp is not sensitive to the center of mass effect. As such, if the

core of the helium isotopes is not distorted by adding or removing additional neutrons, the

ρpp distributions should be the same [128].

We plot results of r2ρpp in figure 5.23. This illustrates the fact that the protons in 3He are

on average further apart than in the even isotopes. However, the proton-proton correlation

ρpp does not explain the trend in size between 4He, 6He and 8He. The average separation of

the protons in the even isotopes is similar and does not lead to the 5 % decrease in charge

radius measured. The large separation of the protons in the 3He nucleus is related to the

rather small binding energy per nucleon of 3He, which is 2.57 MeV compared to 7.07 MeV

for 4He/. That the binding of 4He is so large is related to its being a magic nucleus leading

to the especially tight binding of the alpha particle. The trends in binding energies for the

helium isotopic chain is given in table 5.7.

Calculations of ρp using the GFMC explicitly reproduce the trend in rp—predicting the

trends observed. The function r2ρp for the helium isotopes is given in figure 5.22. In

addition, it also predicts a neutron distribution with long tails—in support of the neutron

halo interpretation. We therefore conclude that the increase in RMS charge radius from 4He

to 6He and the decrease from 6He to 8He is due to the motion of the α particle core about

the center of mass of the nucleus, and that the neutrons are spatially correlated to be close
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Figure 5.24: Cartoon of nucleons in helium isotopes

to each other as given in figure 5.24.
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CHAPTER 6

HELIUM - 3 SPECTROSCOPY

We have reported isotope shifts measurements on the 23S - 33P transition between 4He and

6He [165], and also between 4He and 8He [114] by performing spectroscopy on single atoms

held in a magneto-optical trap. These measurements probe the difference of the mean square

charge radii of the two isotopes. In order to fully understand systematic effects inherent in

the trap based technique, it is desirable that a 4He and 3He isotope shift measurement

be made in the trap and compared with a more precise result obtained using a different

technique. Marin et al. have reported the most precise 3He - 4He isotope shift result on the

23S - 33P transition [105]. They performed laser spectroscopy in a vapor cell, obtaining the

isotope shift with an uncertainty of 165 kHz. However, using the trap based technique, we

obtained an uncertainty in the isotope shift of 100 kHz [164]. This is a more precise value

than the best published value [105]. As a result, we embarked on making an independent

atomic beam measurement of the isotope shift on this transition. In so doing, we also made

improved measurements of the 33PJ hyperfine intervals in 3He.

6.1 Experimental Details

The experimental scheme involves carrying out Doppler-free fluorescence spectroscopy on a

metastable helium atomic beam. This setup is identical to that used to measure the 4He fine

structure on the 33P manifold as reported by Mueller et al. [115]. The metastable 1s2p23S1

level (lifetime ∼ 2 hours) is populated by electron bombardment of ground state helium

atoms in an RF driven discharge. A mixture of He and Kr gas (partial pressure: 1 × 10−7

and 5× 10−7 Torr respectively) is passed through the discharge region where the 2 3S1 state

is populated. About 1×10−5 of the helium ground state atoms are excited to the metastable

state.
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The intensity of the metastable atomic beam is increased by cooling the RF discharge

with liquid nitrogen. In addition, two dimensional transverse laser cooling is carried out using

the 1s2s 3S1 to 1s2p 3P2 cycling transition for 4He at 1083 nm. For 3He, the 2 3S1, F = 3/2

to 2 3P2, F = 5/2 transition is used. The atomic beam then passes through a collimator

(length:diameter aspect ratio ∼ 200) and a flight path of 1.8 m, after which it enters a

magnetically shielded region. There it is overlapped by a pair of counter-propagating laser

beams of wavelength λ = 389 nm. Transitions from the 2 3S1 metastable state to different

3 3P states are then excited by scanning the frequency of the 389 nm light. The counter

propagating spectroscopy beams are linearly polarized in the y direction as shown in figure

6.1

Figure 6.1: Schematic of the experimental setup. A metastable helium beam is obtained
from an RF discharge and overlapped with a 389 nm spectroscopy beam in a magnetically
shielded region. A simplified level scheme is shown in the top left corner of the figure, along
with the 1083 nm, and 389 nm laser used for transverse cooling and spectroscopy
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Figure 6.2: Levels in the 23S and 33P manifold for 3He and 4He. The intervals designated by
Roman numerals are the hyperfine intervals for which we report improved measurements. In
order to determine the isotope shift between 3He and 4He, we need to consider the hyperfine
shift of the 23S1;F = 3/2 and 33P2;F = 5/2–designated as α1 and α2 respectively. From
[113], α1 = −2246.5873 MHz and α2 = 2162.785 MHz. As discussed in [113], the errors on
these shifts are less than 0.1 kHz and 1 kHz for α1 and α2 respectively. They are hence
negligible when compared with the experimental uncertainties.

6.1.1 Laser System

The light required for transverse cooling is generated by means of a home built temperature

stabilized diode laser system. Frequency control is attained by locking the laser to the same

helium transition for transverse cooling using saturation spectroscopy in a vapor cell [164].
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The 1083 nm light is further amplified by injection locking a Keyopsys fiber amplifier yielding

∼1 W of the 1083 nm light for use in the experiment.

For spectroscopy on the 23S to 33P transition, 389 nm light is generated by frequency

doubling light emitted from an external-cavity diode laser which operates at 778 nm, referred

to henceforth as LD1. We achieve a long term frequency stability of LD1 by effectively

implementing a transfer lock via a fabry-perot cavity to a molecular iodine line. LD1 is

locked to the cavity. The cavity is locked to LD2 which is locked to a saturation spectroscopy

feature of a molecular I2 line. As we scan an offset AOM, we monitor the relative frequency

of LD1 by measuring a beat note frequency between LD1 and LD2. The setup is described

in chapter 5.

About 1 mW of 389 nm light is produced. It is then spatial filtered and transferred near

the interaction region by an optical fiber. The emerging beam is expanded to approximately

1 cm diameter and carefully aligned to be perpendicular to the atomic beam. A cat’s-eye

reflector on the far side of the vacuum chamber ensures that the beam is retro-reflected.

This arrangement of optics makes the retro-reflection immune to small angle steering of the

input probe beam. The quality of the retro-reflection is monitored by looking at a reverse

transmission of light through the optical fiber. A fringe pattern is observed on PD2 which

arises as a result of the interference of light reflected from the front end of the optical fiber

with the light which was reflected by the cat’s eye reflector. By maximizing the contrast of

the interference fringes, a good overlap of the input probe beam and its retro-reflection is

obtained.

6.1.2 Measurement/Detection Scheme

In order to obtain a spectrum, resonant fluorescence from the atomic beam is detected as the

frequency of the probe light is changed. A pair of lensesj forms an image the laser induced
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fluorescence of the 389 nm light from the atoms in the atomic beam onto a photo-multiplier

tube (PMT). In a period of about 2 minutes, the probe light is scanned over an interval of 30

MHz across the resonance by discretely changing the RF frequency of the frequency shifting

AOM in the path of LD1. At each frequency step, the PMT counts, beat frequency between

LD1 and LD2, and relative power of 389 nm light is recorded.
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Figure 6.3: Typical spectrum obtained in two minutes. A Voigt fit is shown along with the
fit residuals.

For each isotope, we measure the frequencies of different transitions from a common

‘ground’ state; namely the 23S1 state for 4He and the 23S1, F = 3/2 state for 3He. Hyperfine

structure intervals are thus obtained by taking differences in the transition frequencies from

the ‘ground’ state to each of the two hyperfine states in the interval of interest. Figure 6.2

shows the hyperfine intervals that we measured. They are indicated by the Roman numerals

I, II, and III. For the 4He - 3He isotope shift, the 23S1 to 33P2 transition in 4He (designated

as f), is compared with the 23S1, F = 3/2 to 33P2, F = 5/2 in 3He (designated as f −∆2).

Each spectral line obtained is fit using a χ2 minimization to a Voight profile whose
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Lorentzian width is constrained to the natural line width of the transition. The uncertainty

on the fit ranges betweeen 10 to 100 kHz.—depending on the line being measured, and the

intensity of the probe light. We obtaine reduced χ2 values ∼ 1 for most of the fits. At

each probe intensity, we measure each line center about four times. We take the weighted

average of the four measurements as the central value for a particular probe intensity, and

their standard deviation as the statistical uncertainty.

Two spectra are obtained in sequence. One with the retro-reflected beam blocked (i.e.

one beam, ‘OB’ configuration) and the other with the retro-reflected beam unblocked (i.e.

two beam, ‘TB’ configuration). A difference in the line center frequency of the OB and TB

spectrum would suggest a deviation from the orthogonal alignment between the probe laser

and the atomic beam. By iteratively measuring the line center for the OB and TB cases

while changing the angle between the probe beam laser and the atomic beam, the condition

of perpendicular alignment is obtained. This is illustrated in figure 6.4

From figure 6.4, we note that the TB line center is insensitive to the change of the

angle between the laser and atomic beam. On the other hand, the position of the OB lines

moves dramatically when that angle is varied. This is because in the TB configuration, the

Doppler shift due to a misalignment results in two peaks which are symmetrically shifted

about the center frequency. This leads to a broadening of the line, but not a shift. The ideal

measurement position is therefore the angle where the two configurations lead to the same

value for the line center.

Now, momentum is transferred to the atoms from the photons with each photon absorp-

tion and re-emission cycle. As a result, there is a net momentum transfer to the atoms in the

OB case which results in a shift of the line center. In principle this shift tends to zero for a

TB configuration, as the net momentum transfer vanishes if the beam and its retro-reflected

partner are balanced. In order to eliminate the perturbation due to radiation pressure of

the light, we measure the spectrum of each line at intensities ranging from 2 × 10−3 Is to
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Figure 6.4: Shifts in the line centers as the angle between the probe beam and the atomic
beam is varied through an angle of 1 radian. Notice that the OB spectrum is sensitive to
the residual Doppler shift, which is absent in the TB case.

8 × 10−3 Is. The saturation intensity for this transition is Is = 3.33 mw/cm2. We then

extrapolate the power dependent line center values to the ‘zero intensity’ condition. We

refer to a set of power dependent frequency measurements as a ‘series’. In evaluating the

frequency of a hyperfine interval, we take the difference of the zero intensity intercepts of

the two transitions—propagating the errors accordingly. Results are given in tables 6.2 and

6.3. The reported frequency of each interval is the average of three to four series. We show

a plot of the power dependence of line center frequencies in figure 6.5, as well as the series

average contributing to the isotope shift in figure 6.2.2.
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Figure 6.5: Left figure:Dependence of Line Center position on the intensity of the probing
laser. Panel (a.) Probe laser not retro-reflected. Panel (b.) Probe laser retro-reflected.

6.2 Results / Error Analysis

6.2.1 Systematic Error Budget

Laser spectroscopy in an atomic beam is a favorable technique because it is free from many

systematic effects. In particular, it is substantially less sensitive to pressure shifts associated

with vapor cell techniques [173] or to Zeeman shifts that can arise in magneto - optical

trap based schemes [164]. In our experimental setup, the interaction region is enclosed in a

magnetically shielded region, where the earth’s magnetic field is attenuated by up to a factor

of 100. The total field is less than 3mG in the center of the shield. It should be noted that

the probe beam is linearly polarized. Therefore, the presence of a non zero magnetic field

will, to the first order only broaden the line and not shift it. Based on the magnetic field
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attenuation and the Zeeman shift of 1.4 MHz/Gauss, the maximum systematic error due to

Zeeman shifts for each transition measured is estimated conservatively to be 5 kHz.

Systematic errors due to Doppler shifts are estimated from the difference between line

center frequencies obtained from the OB and TB configurations. If a difference between

the OB and TB configurations is measured, an estimate for the maximum Doppler shift is

obtained by multiplying the difference between the line centers with the maximum slope of

the correlation plot shown in figure 6.4. Using this procedure, we attribute uncertainties of

5 kHz to hyperfine intervals due to the steering of the probe beam. For the isotope shift

measurement, we assign a possible systematic error of 10 kHz due to Doppler shifts. This is

larger than for the hyperfine intervals because of the mass dependence of the Doppler shift.

Light pressure shifts refer to shifts of the resonant frequency due to an imbalance of

beams, leading to the pushing of atoms. Because of our procedure for using a balanced

pair of beams for probing and extrapolating to zero intensity, we conservatively estimate

systematics due to light pressure shifts to be less than 3 kHz. Other sources of possible

systematics are estimated to be less than 3 kHz.

Table 6.1: Systematic Error budget for the hyperfine intervals and isotope shift measurements
reported

Effect Hyperfine Intervals (kHz) Isotope Shift (kHz)

Zeeman Shifts 5 5

Doppler Shift 5 10

Light Pressure Shift 3 3

Other effects < 2 < 3

Total 10 13
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6.2.2 Isotope Shift

The presence of hyperfine structure in the 3He spectrum complicates the analysis of an

isotope shift measurement between 3He and 4He. In figure 6.2, we show the hyperfine levels

in 3He with respect to the unperturbed 3He fine structure levels. In [113], the hyperfine

shifts are calculated as perturbations due to the hyperfine interaction from these levels. The

shifts of 23S1, F = 3/2 and 33P2, F = 5/2–designated as α1 and α2 in the figure are given in

[113], as α1 = −2246.5873 MHz and α2 = 2162.785 MHz.

We desire to determine ∆1, the isotope shift in the absence of hyperfine structure. In

order to do so, we measure the frequency difference between the 23S1 - 23P2 transition in 4He

(which we designate as f) and the 23S1, F = 3/2 - 33P2, F = 5/2 transition in 3He (which

we designate as f −∆2). ∆1 and ∆2 are related by the equation:

∆1 = ∆2 − (α1 + α2)

= ∆2 + (2246.5873− 2162.785) MHz

= ∆2 + 83.802 MHz

(6.1)

Four series of measurements were made for the frequencies of the transition in 4He and

3He. The weighted average of the measurements performed yields ∆2 = 42100.388(9.6)(13)

MHz. Applying equation 6.1, we obtain ∆1.

6.2.3 Recoil Correction

We consider the contribution of the differential recoil frequencies of the two atoms on ab-

sorbing and emitting a 389 nm photon on the isotope shift. This recoil frequency is given

by frec = ~k2/4πM , with 3He frec −4 He frec = 108kHz. This is rather large (due to the light

mass of the isotopes involved) and is a substantial fraction of our measurement uncertainty.
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Figure 6.6: Results of the measurements of 4He and 3He denoted as ∆2. This is compared
with the result from [105] and [164]. The quoted uncertainty is purely statistical.

We therefore add a correction of 108 kHz to ∆1, obtaining a final value of the isotope shift,

∆1 = 42184.298(16) MHz

Our derived isotope shift value is compared with the value obtained by the trap based

method, and with the literature value in table 6.2

Table 6.2: 3He - 4He Isotope Shift for the 2S - 3P transition. In MOT, the error is dominated
by the uncertainty in the hyperfine shift α2 shown in figure 6.2.

Method Frequency in MHz reference

Vapor Cell 42184.321(165) Marin et al. [105]

MOT 42184.268 (100) Wang [164]

Atomic Beam 42184.298 (16) this work
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Table 6.3: Hyperfine interval measurement results. The quoted uncertainty is the combined
statistical and systematic uncertainty. The statistical errors for the intervals I, II, and III
were 37, 31 and 68 kHz respectively.

Interval Transition This Work (MHz) Marin et al. (MHz)

I 3 3P2, F = 5/2 - 3 3P2, F = 3/2 542.343(38)

II 3 3P2, F = 3/2 - 3 3P2, F = 1/2 3165.042(32)

III 3 3P1, F = 1/2 - 3 3P0, F = 1/2 8510.725(68) 8150.864(276)

I+II 3707.380(49) 3706.902(240)

6.2.4 Hyperfine Interval Results

We measured the hyperfine intervals of levels in the 3P manifold indicated in figure 6.2.

Each hyperfine interval that we measured was obtained as an average of two or three series

of measurements. Like in the determination of the hyperfine shift, Each series comprises of

a set of power dependent measurements with an extrapolation to zero intensity. Systematic

errors are accounted for as described in section 6.2.1. Table 6.3 gives a summary of results

obtained. The quoted uncertainties in parenthesis are the combined statistical and systematic

errors.
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CHAPTER 7

HYPERFINE SUPPRESSION OF TRANSITIONS IN HE-3

We have published the contents of this chapter before in [154]. The text is reproduced verba-

tim.

Due to its simplicity, the helium atom has been a proving ground for precision atomic

measurements and calculations of few-body quantum systems. The knowledge gained from

this effort is used to test bound-state quantum electrodynamics [112, 113, 121], determine the

fine structure constant [173, 70], and explore exotic nuclear structure [165, 114, 147, 105].

We report results of a combined theoretical and experimental study on the strengths of

2 3S1 − 3 3PJ transitions in 3He.

Surprisingly, we observe that the strengths of two “allowed” transitions, 2 3S1, (F =

3
2
) − 3 3P1, (F = 3

2
) and 2 3S1, (F = 1

2
) − 3 3P2, (F = 3

2
), are 1,000 times weaker than that

of the strongest transition 2 3S1, (F = 3
2
) − 3 3P2, (F = 5

2
). The level scheme showing these

transitions is presented in Fig 7.1. This dramatic suppression of transition strengths is due to

a rare atomic phenomenon: within the 3 3P manifold, the hyperfine interaction is comparable

to or even stronger than the fine structure interaction. Consequently the conventional model

based on LS -coupling is no longer applicable. Rather, we find that an alternative model

where the fine structure interaction is treated as a perturbation on states obtained by first

coupling nuclear spin to the total electron spin provides a good qualitative explanation of

the observed suppression. We refer to this coupling scheme as IS -coupling. We start by

discussing the details of the experiment and compare the data with the predictions from the

different coupling schemes. Finally, we discuss an exact diagonalization method to account

for the small differences between experiment and the IS -coupling scheme.

We measure the ratio of transition strengths using a cross-beam laser induced fluorescence

method. A beam of metastable helium atoms in the 2 3S1 state is prepared in a liquid-
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Figure 7.1: Level scheme of 3He showing the levels investigated, with the arrows indicating
the suppressed transitions observed. The level positions are drawn to scale within each
manifold. The large hyperfine splitting with respect to the fine structure splitting is evident.
With a nuclear spin I = 1/2 for 3He, the levels are designated by the familiar term symbols,
with J = L+S, F = J+ I on the left. The levels are labeled on the right using the quantum
number K = I+ S, F = K+ L.

nitrogen cooled RF-driven discharge. A retro-reflected beam of linearly polarized 389 nm

light is incident perpendicular to the atomic beam. The polarization of the light is along

the direction of the atomic beam. A uniform external magnetic field of 5 Gauss is applied

along the direction of the laser to provide an axis of quantization. As the frequency is

scanned across different resonances, the atoms are excited, and fluorescence from the atoms

is detected in the direction normal to the atomic and laser beams. The metastable atomic

beam is collimated using a collimator, made of a stack of microscope cover slips which

provides high collimation in the direction along the laser beam [71]. We are able to obtain

Doppler broadened lines of 20 MHz line width. The natural line width of the transitions is
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1.6 MHz. Approximately 4 mW of 389 nm light is obtained by frequency doubling infrared

light at 778 nm. The frequency of the 778 nm light is referenced to a temperature stabilized

Fabry-Perot cavity. The power of the laser and its wavelength are monitored continuously.

The nine E1 allowed transitions are repeatedly probed in a random order and the spectra

are recorded. Each spectrum is fitted using a statistically weighted Voigt profile. The

integrated area of the profile divided by the power of the probing laser beams is taken as

a measure of the transition strength. As the absolute atomic beam flux and efficiency of

detecting the fluorescence photons are not measured in this experiment, only the ratios of

transition strengths are determined. By defining the strength of the strongest transition,

2 3S1, (F = 3
2
) − 3 3P2, (F = 5

2
), to be unity, we determine the relative strengths of the

other eight transitions. The results are presented in Fig. 7.2 and in Table 7.1.

The intensity of the probing laser beam is varied depending on the transition under

study. For example, when probing the two highly suppressed transitions, the intensity of

the probe is increased by two orders of magnitude. In all cases, however, the laser intensity

is kept well below the saturation intensity of the particular transition under study. Indeed,

the intensity is chosen so that on average less than one photon is scattered by each atom

as it passes the laser beams in approximately 2 µs. This is to avoid nonlinear effects in the

measurements due to optical pumping and mechanical effects of the light on the atomic beam.

Such systematic effects are studied by examining the dependence of transition signal on the

laser beam power. Additional corrections are made and systematic errors generated due to

changing background in the measured laser power and the anisotropic angular distribution

of the fluorescence emission. The final error estimates are given in Table 7.1.

The textbook strategy [150] to estimate theoretically the atomic transition strengths is

based on the presumed hierarchy that hyperfine splittings be small in comparison with fine-

structure splittings. Consequently approximate eigenstates of the total Hamiltonian may

be constructed by first coupling L (total orbital angular momentum quantum number) and
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Figure 7.2: Comparison of relative transition strengths for all E1 allowed transitions between
the 2 3S1 and 3 3PJ manifolds. All values are normalized with respect to the 2 3S1, (F =
3
2
)− 3 3P2, (F = 5

2
) transition.

S (total electronic spin quantum number) to form the total electronic angular momentum

J ; coupling J and I (nuclear spin quantum number) then gives the total atomic angular

momentum F . Within this LS -coupling model, the total strength for an electric dipole

transition may be evaluated using standard angular momentum algebra [60].

The results of this LS-coupling model are compared with the experimental data in

Fig. 7.2. It is apparent that there is not even qualitative agreement. The origin of the

failure of the LS-coupling model may be understood as follows. In 3He, the hyperfine struc-
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Table 7.1: Relative transition strengths for all E1 allowed transitions between the 2 3S1 and
3 3PJ manifolds. All values are normalized with respect to the 2 3S1, (F = 3

2
)−3 3P2, (F = 5

2
)

transition.

Initial (J,F) Final (J,F) Experiment LS IS Exact
2 3SJ 3 3PJ Diag.

(1,3/2)

(2,5/2) 1 1 1 1

(2,3/2) 0.69(5) 0.11 0.67 0.67

(1,1/2) 0.26(4) 0.11 0.33 0.24

(1,3/2) 0.0012(2) 0.55 0 0.0010

(0,1/2) 0.10(5) 0.22 0 0.093

(1,1/2)

(2,3/2) 0.0011(4) 0.55 0 0.0010

(1,1/2) 0.08(3) 0.22 0 0.093

(1,3/2) 0.65(4) 0.11 0.67 0.67

(0,1/2) 0.27(4) 0.11 0.33 0.24

ture is almost entirely due to the magnetic dipole interaction of the tightly bound 1s electron

with the nucleus. The fine structure is a consequence of both one-body spin-orbit coupling

of the excited nL electron and two-body spin-other-orbit and spin-spin interactions of the

nL electron with the 1s electron [17]. As n increases, the fine-structure splittings decrease

as n−3. The hyperfine interaction of the 1s electron, on the other hand, tends for large n

to the constant hyperfine interaction strength in 3He+. Note that the hyperfine splitting in

the ground state of 3He+ is 8.7 GHz [66], which is comparable to, or larger than, the level

spacings within the 2 3S and 3 3P manifolds (see Fig. 7.1).

The relative strength of the hyperfine interaction in 3He has been recognized before

[67, 159, 46, 68, 25, 131, 161] and has been taken as an indication that a simple angular

momentum coupling model describing transitions in 3He is not available and that a numerical

diagonalization of an effective Hamiltonian is necessary. We demonstrate in the following
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that although n is quite small in the 3 3P manifold, the assumption of relatively weak fine

structure interactions does provide a simple model that allows us to understand qualitatively

the strengths of transitions from 2 3S to 3 3P.

For 3 3P, S is still a good quantum number, since the separation of this manifold from

3 1P is large (∼ 104 GHz) in comparison with the hyperfine and fine structure splittings.

Therefore, the basic idea underlying what we refer to as the IS-coupling model is that

the electrostatic exchange interaction between the two electrons preserves S; the hyperfine

interaction couples S and I to form a new intermediate angular momentum K; and F is then

obtained by coupling L and K. In this picture, the 3He eigenstates of relevance here are not

labeled in terms of nLS(J)I, F , but in terms of nIS(K)L, F . An immediate consequence of

the fact that the electric dipole operator acts on neither S nor I is that K must be conserved

in an E1 transition, i.e., |〈Ψ(n′L′S′I)
K′F ′ ‖ D̂ ‖ Ψ

(nLSI)
KF 〉|2 vanishes if K differs from K ′. A similar

model was used in 1933 for a case in which S is not conserved [73], but that appears to

be the only other study employing an extreme hyperfine-coupling picture to develop a basic

understanding of transition strengths involving hyperfine multiplets.

As shown in Fig. 7.2, there is good qualitative agreement between experiment and the

IS-coupling model, thus suggesting that already for n = 3, the fine-structure interactions

may be considered perturbations to the hyperfine structure. For instance, within the IS-

coupling model, the suppression of the transition from 2 3S1, F = 3
2

(K = 3
2
) to 3 3P1, F = 3

2

(K = 1
2
) follows from the K-selection rule in E1 transitions. On the other hand, according

to experiment, the transition from 2 3S1, F = 3
2

(K = 3
2
) to 3 3P0, F = 1

2
(K = 1

2
) is

weakly allowed, in slight deviation from the IS-coupling model. We note that the observed

suppressions for certain transitions from 2 3S to 5 3P [25, 161] are fully consistent with the

K-selection rule.

In order to characterize the nature of the perturbations to the IS-coupling model for

3He, and account for the slight deviations, we have performed an exact diagonalization of
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the total Hamiltonian H within the manifold of 3 3P and 3 1P states, including both fine

and hyperfine structure. The total Hamiltonian of 3He in the absence of external fields is of

the form

H = HNR +Hfs +Hhfs (7.1)

where HNR is the non-relativistic Hamiltonian, Hfs represents the fine structure interaction

for helium as described by many authors (see Drake [50, 51] for a review), and Hhfs represents

the hyperfine structure interaction, see for example, Bethe and Salpeter [17]. In this picture,

Hhfs is treated as a small perturbation relative to the large electrostatic splitting between

states with different principal quantum number n, and by exact diagonalization within the

manifold of strongly mixed states with the same n. The technique is basically the same as

that described by Hinds, Prestage and Pichanick [82].

Using these methods, a comprehensive investigation of the fine and hyperfine structure

of 3He has recently been carried out by Morton, Wu, and Drake [113]. All fine structure

and hyperfine structure parameters required to diagonalize the complete fine and hyperfine

interaction matrix in the basis set of singlet and triplet states are accurately calculated by

using double basis set variational wave functions in Hylleraas coordinates as described by

Drake [50, 51]. For the 3P state, instead of using directly the theoretical energies for 3He,

we combined the theoretical isotope shifts for 3He relative to 4He [113] with the best experi-

mental ionization energies for 4He.[115, 113]. This gives higher accuracy due to cancellations

of the mass-independent QED uncertainties in the calculated isotope shifts.

The final step is to calculate the electric dipole transition line strengths between the

perturbed hyperfine states of 2 3S and 3 3P in terms of standard angular momentum the-

ory, in which the perturbed hyperfine states are linearly expanded in terms of unperturbed

eigenstates. The expansion coefficients are obtained by the above diagonalization of the
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complete matrix. The final results and the comparison with experiment are given in Table

7.1. The calculations show that the mixing between hyperfine states of 3 3P with different

K but the same F of 3He precisely accounts for the deviations shown in Table 7.1 from the

IS -coupling model. This mixing is due to the fine structure interactions. We find that both

the one-body spin-orbit, and the two-body spin-spin and spin-other-orbit interactions must

be included, in order to accurately reproduce the strengths. In the case of the 2S state, this

hyperfine mixing is also important for hyperfine structure, as shown by Riis et al. [139], but

its contribution to the transition strength is negligible in the present work.

In summary, the hyperfine suppression of 2 3S1, (F = 3
2
) to 3 3P1, (F = 3

2
) and 2 3S1, (F =

1
2
) to 3 3P2, (F = 3

2
) radiative transitions in 3He is caused by a selection rule that emerges in

the limit of strong hyperfine mixing between states with the same F but different J . In this

limit, the radiative transitions are better described by a coupling scheme in which I and S

are coupled to form K, and then L is coupled to K to form F. In this limit, the eigenvalue

K is approximately preserved as a good quantum number. The small deviations from the

IS -coupling scheme are well accounted for by an exact diagonalization for the intermediate

coupling case. However, with increasing n, the IS -coupling scheme should rapidly become

more accurate because the fine-structure interactions decrease in proportion to 1/n3, while

the hyperfine interactions tend to a constant at the series limit. The surprise is that it

already works so well for n = 3.
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Part II: Studies with Radium



CHAPTER 8

DISCRETE SYMMETRY TESTS WITH PERMANENT

ELECTRIC DIPOLE MOMENTS

The symmetry present in a physical system is reflected in the character of the Lagrangian (or

Hamiltonian) of the system and the equations of motion used to describe its dynamics. In

classical physics, we encounter continuous symmetries such as those to do with the isotropy

of space, or due to space and time translation. These lead to the conservation of angular

momentum, momentum and energy respectively.1 Other types of symmetries which arise

in quantum mechanics are the discrete symmetries of charge-conjugation (C), parity (P)

and time-reversal (T). Like their continuous counterparts, they also have deep consequences

on the dynamics of the systems they describe. The main motivation of the experiments

described in Part-II of this thesis is to find evidence for, or set limits on possible T-violation

in radium atoms. As we will describe below, we do so by searching for a non-vanishing

permanent electric dipole moment (EDM).

We start by briefly considering the symmetry operations of P, C, and T.

(i.) Parity (P): This operation refers to an inversion of space, in which x → −x, y →

−y, and z → −z. In effect, a left handed coordinate system under parity is transformed

to a right handed coordinate system. In quantum mechanics, parity is described by the

unitary operator P where |ψ(t, r)〉 → P |ψ(t, r)〉 = |ψ(t,−r)〉. If parity is conserved,

then the Hamiltonian H commutes with the P . Atomic and nuclear states can be

classified based on their parity eigenvalue η = ±1. i.e. P |ψ(t, r)〉 = η |ψ(t, r)〉. When

the parity operation is applied twice, we return to the initial state. In the same manner

1. The connection between conserved quantities and continuous space-time symmetries is made by
Noether’s theorem. It is worthwhile noting though that Noether’s theorem does not apply to the discrete
symmetries. There are therefore no associated conserved quantities associated with discrete symmetries in
the same sense.
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as for atomic states, one can consider the intrinsic parity of hadrons, which are bound

states of quarks and anti-quarks. If parity is conserved in a decay process, then the

intrinsic parity of the initial and final state must be the same.

(ii.) Charge Conjugation (C): This operation exchanges a particle with its (charge

conjugate) antiparticle. All charges, i.e. electric, lepton number, baryon number etc

are exchanged as a result. The concept of charge conjugation assumes a full meaning

only in the context of relativistic quantum mechanics, which allows for ‘negative energy

states’ which are identified as anti-particles. Consider for example the pions π+ and

π−. Under the charge-conjugation operation, C |π+〉 = |π−〉. We can assign a charge-

conjugation eigenvalue (C-parity) ηC = ±1 for particles which are their own anti-

particles such as the photon or π0. For example, a photon has ηc = −1 because

under charge conjugation, electric charges switch sign and therefore so do electric

and magnetic fields. Because π0 can decay into two photons via the EM interaction,

π0 → γ + γ, we infer the C-parity of π0 to be ηc = +1. Charge conjugation symmetry

therefore limits the available decay modes of particles. Consequently, a class of tests

of charge conjugation symmetry involves looking for decays which violate C.

(iii.) Time-Reversal (T): This refers to the operation where t → −t. As a consequence,

under this operation, v → −v; which results in the reversing of the direction of time

flow. In quantum mechanics, the time-reversal operation is represented by an anti-

unitary operator T = KU , where U is a unitary operator which transforms t→ −t and

K is the complex conjugation operator [143]. Under the time-reversal operation, T ,

|ψ(t, r)〉 → T |ψ(t, r)〉 = |ψ(−t, r)〉. In a sense, a time reversal operation is equivalent

to motion reversal. However, when considering internal degrees of freedom such as spin,

the notion of motion reversal will be inadequate as there is really nothing moving per

se [143].
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8.1 Lorentz invariance considerations

For a fermion field described by ψ(x), a relativistic quantum theory can be written in terms

of a Lagrangian density L, where the Lagrangian

L =

∫

d3x L(x, t). (8.1)

As in classical mechanics, the equations of motion are obtained from the Euler-Lagrange

equations.2 In general, a Lorentz invariant observable can be written as ψΓαψ, where the

Γα refer to the elements of the set of linearly independent anti-symmetric combinations of

the Dirac gamma matrices [123].

Γ ≡ {1, γµ, σµν/2, γµγ5, iγ5} (8.2)

Based on how Lorentz invariant observables transform under rotations, reflections and boosts,

they can be classified as scalar, vector, tensor, axial vector, and pseudo-scalar. These corre-

spond to each of the Γα. We give in table 8.1 the transformation properties of the different

forms under the transformations C, P, and T.

Consider for example, the QED Lagrangian for a spin-1/2 particle, say an electron,

coupled to an electromagnetic field:

L0 = −1

4
FµνF

µν − ψ̄eγ
µ[∂µ + ieAµ]ψe −meψ̄eψe (8.3)

where Fµν are the field strength tensors of the electromagnetic field. L0 consists of terms

which are all Lorentz scalars, and therefore even under C,P, T and combinations of them.

2. We can similarly define a Hamiltonian density H, where the conjugate variable, Π(x) = ∂L

∂ ˙ψ(x)
and

H = Πψ̇(x)− L [123]. The equations of motion then follow from Schroedinger’s equation
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Table 8.1: Transformation properties of fermion bilinears under C, P and D. We use the
shorthand (−1)µ ≡ 1 for µ = 0, and (−1)µ ≡ −1 for µ = 1, 2, 3 [123]

C P T CPT

Scalar S(x) ≡ ψ(x)ψ(x) +1 +1 +1 +1

Vector V µ ≡ ψ(x)γµψ(x) -1 (-1)µ (-1)µ -1

Pseudoscalar P (x) ≡ iψ(x)γ5ψ(x) +1 -1 -1 +1

Tensor T µν(x) ≡ ψ(x)σµνψ(x) -1 (-1)µ(-1)ν -(-1)µ(-1)ν +1

Axial Vector Aµ(x) ≡ ψ(x)γµγ5ψ(x) +1 -(-1)µ (-1)µ -1

Now, consider the interaction of the magnetic moment of the particle with a magnetic field

Lµ =
µ

2
ψ̄σµνψF

µν non−rel−−−−→ −µB · S
S

(8.4)

Like L0, Lµis also even under P and T.

Assume for a moment that this spin 1/2 particle has a permanent electric dipole moment

d. Now, d = dS/S, since an eigenstate of the particle is characterized by its total angular

momentum. In other words, the dipole moment is aligned parallel or anti-parallel to the

spin. Were this not so, then an additional quantum number would be required to designate

the state. The dipole moment will then couple to an electric field much like a magnetic

dipole moment couples to a magnetic field.

Ld =
i

2
dψ̄iσµνγ5ψF

µν non−rel−−−−→ dE · S
S

(8.5)

In equations 8.4 and 8.5, the non-relativistic limit of the more general Lorentz invariant

interaction are also given. Only the space component of the 4-vectors are necessary for

expressing the non-relativistic quantum mechanics interaction. In table 8.2, we give the
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transformation properties of a number of dynamical variables under P and T. In particular,

we note that:

P † dE · S
S
P = −dE · S

S

T † dE · S
S
T = −dE · S

S

(8.6)

This implies that though Ld is Lorentz invariant, it is a psuedo-scalar and odd under P

and T. Therefore, if parity and time-reversal are good symmetries, then the electric dipole

moment d must vanish.

In general, we note that it is possible to write down a term in L which is Lorentz

invariant, but yet violates C, P, or T individually. However, any quantum field theory which

is unitary (i.e., has a Hermitian Hamiltonian for its time-evolution generator), local (i.e., the

Lagrangian contains only derivatives up to a finite order), and Lorentz-invariant, must have

CPT as a symmetry. This is known as the CPT theorem [143, 151].

In the brief discussion above, we outlined the argument for why an electron is forbidden

from having a permanent EDM. This reasoning applies to any non-degenerate quantum

mechanical eigenstate which has spin such as neutron, proton, atoms, molecule etc. All

permanent EDMs are forbidden if T and P are both conserved.

The connection between the existence of an EDM and the conservation of parity was

appreciated by Purcell and Ramsey in 1950 [135]. They initiated a search for the permanent

EDM of the neutron. This experiment triggered the beginning of a series of permanent EDM

searches which continue till date.
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Table 8.2: Transformation of some common dynamic variables under P, and T

parity time-reversal
r r → −r r → r

p p → −p p → −p

J = r× p J → J J → −J

E E → −E E → E

B B → B B → −B

8.2 Experimental Demonstration of Symmetry Violation

8.2.1 P-violation

The discrete symmetries C, P and T were, until the late 1950s believed to all be good

symmetries. In constructing Lagrangians to describe the interactions of nature therefore,

terms that violated P, C or T were necessarily excluded. Questions as to the conservation of

parity were raised by C. N. Yang and T. D. Lee, as they sought to explain the so-called θ− τ

puzzle. This is well reviewed in [151]. C. S. Wu and collaborators, following the suggestion

by Yang and Lee [101], tested for the violation of parity in the beta decay of spin-polarized

cobalt-60 [171]. Their experiment involved measuring the angular distribution of the emitted

electrons in the beta decay. They observed a distribution which depended on the pseudo-

scalar 〈I〉 · p, where I is the direction of the nuclear polarization and p is the momentum

of the emitted electrons. This was a clear signature for parity violation, as it indicated that

the rate of emitted electrons in the direction of the nuclear polarization differed (was less),

than the rate of emission in the direction opposite the direction of nuclear polarization. The

notion of left/right was therefore not merely conventional. The decay process clearly had a

preferred handedness as it were. A detailed review of the experiment is provided in [151].

The observation of parity violation in beta decay was shortly followed by observations of

parity violations in other weak interaction processes. In order to reflect this, the theory of the
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weak interaction was reformulated in terms of left handed current-current interaction with

the currents having a vector minus axial vector character.3 The weak interaction therefore

acts on left handed particles and right handed anti-particles

Beta decay, described above is mediated by the charged weak currents given by the W-

bosons W±. As a result of their work on the unification of the electromagnetic and weak

interactions, Glashow, Salam and Weinberg predicted the existence of a neutral Z boson,

and therefore a neutral weak current. It turns out that processes mediated by the weak

neutral current can interfere with processes mediated by the photons which are also neutral.

With the detection of the neutral weak current, it was therefore realized that parity violation

effects might be detectable in atoms [30]. Atomic parity violation has been seen in a variety

of systems, and provides values of the weak mixing angle at low momentum transfer. Reviews

of atomic parity violation can be found at [30]. We note in passing that the atomic parity

violation observed arises from interactions which are odd under parity but even under time

reversal symmetry. Hence, they do not lead to permanent electric dipole moments.

8.2.2 CP-violation

The observations of parity-violation as outlined above were accompanied by the violation of

charge-conjugation as well—implying that the combined operation CP was conserved. This

meant that all of the weak interaction processes observed involved a transition from an initial

state with a given CP eigenvalue to a final state with the same CP eigenvalue.

In 1964, Christenson, Cronin, Fitch and Turlay [39] observed a CP violating process in

the decay of the neutral K mesons. Two species of neutral K mesons were known to exist

|K1〉 and |K2〉 with CP eigenvalues of -1 and +1 respectively. Neutral kaons have a 2-pion

decay mode (π◦π◦ and π+π−) with associated CP eigenvalue +1, and a 3-pion decay mode

3. In saying the current is left handed, we are referring to the chirality of the current given by the projector
PR,L = 1

2 (1± γ5)
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(π◦π◦π◦ and π+π−π◦) with CP eigenvalue -1. (Recall that the π has an intrinsic parity of

-1). If CP is always conserved, then |K1〉 must only decay via the 2-pion decay mode, and

similarly |K2〉 must only decay via the 3-pion decay mode. The 3-pion decay mode has a

lower Q value than the 2-pion decay mode. Hence, there is less phase space available for the

3-pion decay, which implies that the |K2〉 is expected to have a longer lifetime [151]. Indeed

two species of neutral kaons were observed, with the short lived kaon having a lifetime of

8.95× 10−11s, and the long lived kaon having a lifetime of 5.1× 10−8s.

Christenson, et al. [39] discovered that, in violation of CP symmetry, K2 decayed to

3-pions. Their conclusion then was that the CP eigenstates |K1〉 and |K2〉 were not the weak

interaction eigenstates. Rather, the weak interaction eigenstates are the linear combinations

|KS〉 =
1

√

1 + |ǫ|
(|K1〉+ ǫ |K2〉)

|KL〉 =
1

√

1 + |ǫ|
(|K2〉+ ǫ |K1〉)

(8.7)

where |KS〉 and |KL〉 refer to the short-lived and long lived neutral Kaons respectively. The

fact that ǫ ∼ 10−3 is finite indicates CP violation in the weak interaction.

What we have described above is flavor changing CP violation. It is explained in the

Cabibo-Kobayashi-Maskawa model as being due to the fact that the mass eigenstates are

different from the weak interaction eigenstates. The CKM matrix defines the mixing angles,

and has a single complex phase. The single CP violating phase in the CKM model accurately

predicts the observed CP violation in the B sector as well as in the K sector. Reviews of

flavor violating CP violation can be found at [26, 151, 24]

An open question in physics is whether or not the flavor violating CP violation in the

weak interaction as accounted for by the CKM model is the only source of CP violation. This

question is connected to the so called ‘Strong CP problem’ as well as to the observed matter-

anti matter asymmetry in the universe. The Strong CP problem refers to the presence of a
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CP violating term in the QCD Lagrangian

LQCD = L0 + θQCDG
µνG̃µν (8.8)

where Ga
µν are the field strength tensors of the gluon fields. L0 is the part of the Lagrangian

which is even under P and T. However, the additional term—parametrized by the angle

θQCD is odd under T and P. 4 If θQCD 6= 0, then we would observe CP violation in the strong

sector. The observation is that θQCD is vanishingly small. There is no satisfactory reason

why that is so. A plausible idea that would explain the apparently zero value of θQCD posits

the existence of an additional symmetry which predicts the existence of axions. To date, no

axions have been detected [151].

A. Sakharov, in 1967, considered the question of the relative abundance of matter and

anti-matter in the universe. There is a clear abundance of matter over anti-matter. This

can be quantified in terms of the baryon number of the universe (B > 0). Recall, that the

baryon number for anti-matter is < 0. How such an asymmetry could arise from a Big bang

initial condition B = 0 is presently not well understood. Sakharov’s proposal was that such

an asymmetry could be generated if the following necessary though not sufficient conditions

were satisfied:

(i.) At least one Baryon number violating process

(ii.) interactions outside of thermal equilibrium

(iii.) C and CP violating processes

The CP violation observed in the weak sector, as described by the CKM model is insuf-

4. θQCD is an angle that the quark fields are rotated by under a gauge transformation. In principle, such
a term also exists in QED. It is however a total derivative and has no physically observable consequences
in QED because QED is an Abelian theory. The fact that QCD is non-Abelian means that among other
things, this term has physically observable consequences [123]
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ficient to generate the observed baryonic asymmetry. There is reason to believe therefore

that there is more to the CP violation in physics than is included in the standard model.

8.2.3 EDMs as probes of physics beyond the standard model

We have described how P, C, and CP are violated in the weak interaction. What this means

is that the standard model (SM), within the context of the CKM model allows for non -

zero EDMs. However, it turns out that the SM predictions for EDMs are extremely small.

In particular, the SM value for the electron EDM due to the complex phase in the CKM

matrix arises as 4th order electroweak contributions [85], and is on the order of 10−38 ecm.

Similarly, the standard model value for the neutron EDM is ∼ 10−32 ecm [40]. Similarly, the

EDMs of other species are likewise suppressed in the SM.

Because the standard model CP violation leads to EDM values which are so small, then

any EDM which is detected at present levels of experimental sensitivity is evidence for physics

beyond the standard model. In other words, EDMs are effectively background free signals

of new physics. This is a very attractive feature for an experiment. There are a variety

of EDM search experiments looking for P and T violation in different sectors. They share

many common features, and so we describe the idea behind the generic EDM experiment

in a neutral atom. We next describe the nature of typical experiments designed to detect

EDMs.

8.3 General idea of a permanent EDM experiment

Consider an atom in a state with total angular momentum F = 1/2, and an electric dipole

moment d. The goal of a permanent EDM experiment is determine the magnitude of d.

Because of the non-zero angular momentum of the state, the atom would have a magnetic

dipole moment µ which would couple linearly to the magnetic field as would an EDM to an
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electric field. In the presence of a non-zero magnetic field B, the degeneracy between the

magnetic sub-levels is lifted. The states with mF = 1/2 and mF = 1/2 defined with respect

with the z−axis given by B are designated as |+〉 and |−〉 respectively. If an electric field

E is applied in addition to B, any coupling between d and E would look like an addition

to the usual linear Zeeman effect. The levels will be perturbed as shown in figure 8.1. This

is because d must be aligned with the angular momentum F as required by the Wigner-

Eckhart theorem. A small non-zero EDM will therefore lead to a correspondingly small

energy difference, which an EDM experiment is designed to detect.

One strategy of increasing the sensitivity of an EDM experiment is to move the signal

away from DC, and to convert the signal to a frequency measurement as frequencies can

be very precisely measured. In order do so, the atom is spin polarized transverse to the

magnetic field by optical pumping using circularly polarized light as shown in figure 8.1.

Angular momentum from the circularly polarized light is transferred to the atom. The atom

can then said to be polarized in the x-direction—the direction of the k-vector of the light.

Transverse optical pumping is equivalent to creating a coherent superposition of the two

magnetic sub-levels such that the wavefunction of the atom can be represented as

ψ(t) =
1√
2

(
|+〉+ eiω±t |−〉

)
(8.9)

where, depending on the relative orientation of E and B, the levels are split by 2~ω±, with

ω± = 2πf± = 2

(
µ ·B
~

± d · E
~

)

. (8.10)

Now, ψ(t) is not in a stationary state of the Hamiltonian. The probability of being in

either of the two magnetic sub-levels will oscillate with a frequency given by the Larmor

frequency. This can be pictured in the language of a dipole precessing in a magnetic field.
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Figure 8.1: Measuring an EDM. In the panel (a.), we depict the transverse optical pumping
of the atom using circularly polarized light. The atoms will be polarized in the X direction.
Both the magnetic and electric fields will be in the z direction. (b.), Displacement of the
magnetic sub levels in the presence of electric and magnetic fields. In panel (c), we show a
cartoon of the expected signal, which is a measure of the polarization (n+ − n−)/(n+ + n−),
where n± is the population in the MF = ±1 levels. The polarization precesses at the Larmor
frequency. The envelope of the precession is given by the coherence time.

In this coordinate system, we can talk about 〈ψ|µx |ψ〉 precessing in the magnetic field. All

references to precession henceforth is of this expectation value. A non-zero d, is therefore

detectable as a shift in the Larmor frequency, ∆f which is correlated with the relative

orientation of E and B.

|f+ − f−| = 4d · E/h (8.11)

The fundamental limit of the precision with which we can determine this frequency difference

is given by the shot noise due to the discreteness of the atoms and photons that make up the

signal. For a sample of N atoms precessing in a magnetic field with frequency f , coherence

time τ and a total integration time T , the shot noise limit of the frequency determination is

δf =
1

2π
√
NτT

. (8.12)

The statistical figure of merit of EDM experiments is then given by the precision δf with

which the frequency difference in equation 8.11 can be determined.
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8.4 Best Limits from Permanent EDM Experiments

We have sketched out above some key steps in performing a permanent EDM experiment

with a spin 1/2 atom. A large class of EDM experiments in other species are variations on

this theme. In effect, a coherent superposition of two spin states is prepared in the presence

of a magnetic field transverse to the polarization. As a result, this superposition acquires

a phase with time which is proportional to the magnetic field, as well as with the electric

field. A non-zero EDM leads to a correlation of the precession frequency with the direction

of the electric field. The experimental challenge is then to measure the Larmor precession

frequency as precisely as possible. In addition, systematic effects which are correlated with

the E field define the systematic uncertainty that can be achieved in determining f . We

briefly review some EDM searches in different sectors—highlighting their limitations and

indicating their primary sensitivities.

8.4.1 Neutron EDM Experiments

The neutron EDM is the oldest in this family of searches and was initiated shortly after

Ramsey and Purcell’s suggestion of the neutron EDM as a test of partity non-conservation

[95]. Their sensitivity then was on the order of |dn| < 10−20e cm. Since then, the limit has

been reduced by up to 6 orders of magnitude. The current limit is |dn| < 2.9 × 10−26e cm

The present experiments and the next generation neutron EDM experiments rely on Ultra

Cold Neutrons. There are parallel efforts with large collaborations in Europe at the ILL

[15], and at the Paul Scherer Institute [7], and a U. S. collaboration which is based at the

Spallation Neutron Source at Oak Ridge [90]. The advantage of using UCN is that because

the velocities of the neutrons are substantially reduced, systematic effects due to motional

magnetic fields due to the neutrons moving in an electric field are reduced. The aim of the

next generation experiments is to improve the current limits by two orders of magnitude [40].
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Neutron EDM searches are especially sensitive to CP violation of hadronic orgin, for example

θQCD, the EDM of quarks, chromo EDMS etc. The different contributions are nicely treated

in [130]. An appeal of neutron EDM experiments is that the neutron is a relative clean

system. Unlike searches in atoms and molecules, there is no atomic or molecular structure

that must be folded in in interpreting the result.

8.4.2 Paramagnetic Atom EDM Experiments

Atomic EDM experiments with species possessing an unpaired electron, are predominantly

sensitive to the EDM of the electron. Such atoms are said to be paramagnetic, and EDM

experiments have been performed in a number of paramagnetic species ranging from Cesium,

metastable xenon and thallium [40].

The best limit to date of the electron EDM experiment using a paramagnetic atom is

derived from a molecular beam experiment using Thallium atoms [138]. Regan et. al. report

a result |de| < 1.6 × 10−27e cm. Their experiment made use of multiple atomic beams to

keep systematic errors under control, and to serve as a co magnetometer. There is also an

ongoing effort to perform an electron EDM search using optically trapped Cesium [64].

There is a lot of activity in developing the next generation electron EDM experiments. In

particular, polar molecules having an unpaired electron have been recognized as attractive

systems. This is because polar molecules can be fully polarized with modest electric fields,

and when polarized, the unpaired electron will be subject to the internal electric field of the

molecule. This is advantageous because the the internal electric fields can be substantially

larger than can be applied in the lab [40, 163]. In fact, the recent result of the electron EDM

reported by Hudson et al. [87], currently sets the best limit of the EDM of the electron.
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8.4.3 Diamagnetic Atom EDM Experiments

Diamagnetic atoms are those atoms which have all electrons paired. A diamagnetic atom can

acquire an EDM from a variety of different sources. One important source is the so called

nuclear Schiff moment S. It is a T and P odd moment of the nuclear charge distribution

which couples with an applied external electric field. We will define it more precisely in

9.1.1. Diamagnetic atoms are also sensitive to the EDM of the electron were it to have one.

This sensitivity is indirect—due to the closed electron shell structure of diamagnetic atoms.

However, as a result of the hyperfine interaction, there is a sensitivity nonetheless and this

is parametrized by the constant ηe. This is treated in more detail in [95]. In general, one

can write the atomic EDM as

dA = ksS + ηede + (kTCT + kSCS + kPCP ) (8.13)

where CT , CS, and CP refer to the CP-violating tensor, scalar and pseudo-scalar couplings

of the electron to the current density of the nucleus [40], and the k coefficients represent

the strength of the different couplings, and depend on the details of the fundamental CP

violating interaction.

Experiments using 129Xe and 199Hg have over the years yielded the lowest limits. Cur-

rently, the best limit is set by the 199Hg experiment at the University of Washington [74].

The atoms are held in vapor cells, and can be readily spin polarized.

8.4.4 Summary of limits

We list in table 8.3 some of the best experimental limits for CP violation derived from EDM

searches in different sectors. As given in the table, different experimental systems studied

to date are sensitive primarily CP violation from different sectors. To date, no evidence
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for CP violationnot accounted for in the SM model has been detected. These systems are

therefore yield complementary information. In addition, theoretical effort in the form of

nuclear, atomic and molecular structure is required in order to interpret experimental limits

in terms of the fundamental CP vilolation.

Table 8.3: Limits of permanent EDMs in different sectors

System Primary sensitivity d (e-cm) References

205Tl de, CS (−4.0± 4.3)× 10−25 [138]

Neutron θQCD,quark-EDMs (0.2± 1.7)× 10−26 [16]
199Hg θQCD, gπNN , CT (0.49± 1.50)× 10−29 [74]

108



CHAPTER 9

EDM SEARCH IN RADIUM-225

9.1 Enhanced Sensitivity to T and P odd interactions in radium -

225

As mentioned in chapter 8, the best EDM limit in the diamagnetic sector for CP violation

in atoms is obtained from the 199Hg experiment. Diamagnetic atoms are predominantly

sensitive to CP violation of hadronic origin.

Haxton and Henley [80] and Sushkov et al. [155] articulated the idea that atoms with

pronounced octupole and quadrupole deformations would have an enhanced sensitivity to

T and P odd interactions of hadronic origin. More recent treatments of this enhancement

can be found in [14, 62] and references therein. In order to understand the origin of this

increased sensitivity, we note that atomic EDM measurements using diamagnetic atoms are

sensitive to the so called nuclear “Schiff moment”. These experiments involve addressing

the electronic degrees of freedom of the atom optically. Any permanent EDM or T and P

odd interaction in the nucleus induces an EDM on the atom. A relevant question to ask

then is to what extent is the nucleus sensitive to an externally applied electric field? When

the atom is placed in this field, the nucleus is shielded from it due to the rearrangement of

the atomic electron cloud, such that the average force on the nucleus is zero. We know that

this screening occurs, because otherwise, the positively charged nucleus would be accelerated.

That also means that in this picture, any EDM in the nucleus, due to say, a neutron or proton

EDM would be similarly shielded from the external electric field and would not couple to

it. Schiff considered this question and arrived at the conclusion that actually an EDM in

the nucleus is not completely shielded from the external field. His results are referred to as

Schiff’s Theorem [145]. He defines a ‘Schiff moment’ which is the lowest order T and P odd
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moment which couples with the applied electric field that can induce an atomic EDM.

9.1.1 Schiffs Theorem

Following very closely the treatment of [62], we consider an atom in an external electric field

E0. If the nucleus of the atom has a permanent EDM d0, then the Hamiltonian of the atom

in the field is

Hatom =
Z∑

i=1

[Ki + Vi + eφ(ri)− eE0 · ri]− epE0 · d0 (9.1)

where Ki is the kinetic energy of the electrons, Vi is the electron - electron repulsive inter-

action, and

φ(ri) =
ep
4π

∫
d3xρ(x)

|x− ri|
(9.2)

is the electrostatic potential felt by each electron due to the complete nuclear charge distri-

bution. The last two terms on the RHS of equation 9.1 encode the interaction of the induced

polarization of the atom, and that of the permanent EDM of the nucleus with the external

field respectively.

In order to discuss the shielding of the external field, we consider the following unitary

transformation on the Hamiltonian Hatom → Hatom = e−UHatome
U . Thus,

Hatom ≃ Hatom + i[H,U ] + . . . (9.3)

If the Unitary operator U is defined as

U =
d0

Z
·

Z∑

i=1

pi, (9.4)
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where pi = −i~∇i, equation 9.3 yields

Hatom =
Z∑

i=1

[

Ki + Vi + eφ(ri)− eφ(ri)−
ep
Z
d0 · ∇iφ(ri)

]

. (9.5)

The form of the operator U in equation 9.4 is used because

〈
i

~
[p, Hatom]

〉

= 0

⇒
〈
i

~
[U,Hatom]

〉

= 0

(9.6)

This holds because there is no average force on the atom in an external field.

As a result, the difference between equation 9.5 and 9.1 must not lead to any energy shift

to first order in d0.

∆ = epd0 ·
(

E0 −
1

Z

Z∑

i=1

∇iφ(ri)

)

= 0 (9.7)

We now have the Hamiltonian in equation 9.5 representing a neutral atom in an external

electric field. Next, we need an expression for φ(r). As noted in [62], if the nucleus is point-

like, then ρ(x) = Zδ3(x), and equation 9.7 assumes the form ∆ = epd0 · (E0 + Ee) = 0,

where Ee is the electric field at the nucleus caused by the electrons.

In reality though, the nucleus has finite spatial extent, and so we expand ρ(x) in a power

series; bearing in mind that it has a total charge Z, a dipole moment d0, and a mean square

charge radius 〈r2〉.

Keeping the monopole and dipole terms in the expansion, we get

ρ(x) =

[

Zδ3(x) + Z
〈r2〉ch
6

∇2δ3(x)

]

︸ ︷︷ ︸

ρmon(x)

−
[

d0 · ∇δ3(x) +
O0 · ∇
10

∇2δ3(x)

]

︸ ︷︷ ︸

ρdip(x)

+ . . . (9.8)
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which is written in terms of the following moments of the charge distribution

∫

d3r ρ(x) = Z
∫

d3r r2ρ(r) = Z
〈
r2
〉

ch

∫

d3r rρ(r) = d0

∫

d3r rr2ρ(r) = O0.

(9.9)

Hatom can be separated into a part that is independent of the dipole moments d0 and

O0, as well as another part which is proportional to them, and therefore odd under P and

T.

Hatom = H◦
atom +HPT

atom (9.10)

where

H◦
atom =

Z∑

i=1

Ki + Vi − eE0 · ri −
Zα

ri
+ . . . (9.11)

and

HPT
atom = −α

Z∑

i=1

∆h(ri) (9.12)

with

∆h(ri) =

∫
d3x ρdip(x)

|x− r| +
do · ∇
Z

∫
d3x ρmon(x)

|x− r| (9.13)

Substituting equation 9.8 into 9.13, we get that the T and P odd interaction with the

electric field is

∆h(ri) = 4πS · ∇δ3(r) + . . . (9.14)
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The Schiff moment S is given by

S =
1

10

[

O0 −
5

3
d0

〈
r2
〉

ch

]

=
1

10

∫

ρ(r)

(

r2 − 5

3

〈
r2
〉

ch

)

rd3 r

(9.15)

As noted in [62], it is like a radially weighted dipole moment. Also, Engel makes a

connection between the expression for the Schiff moment in equation 9.15 with that originally

presented by Schiff.

9.1.2 Effect of Static Deformations

Nuclei assume shapes which minimize the energy of the ground state. In terms of the liquid

drop picture, the destabilizing coulomb energy competes with the stabilizing nuclear surface

tension—such that the equilibrium shape could be non-spherical.

In describing deformed nuclear shapes, it is useful to consider an intrinsic or body fixed

nuclear frame. As discussed in [1, 72], the surface of an axially deformed nucleus can be

parametrized in terms of the deformation parameters β as

R(θ) = RN

(

1 +
∑

l=1

βlYl0(θ)

)

(9.16)

In order to eliminate the center of mass displacement (i.e. keep the center of mass at r =

0), it is required that the β1 term be set to

β1 = −3

√

3

4π

∑

l=2

(l + 1)βlβl+1
√

(2l + 1)(2l + 3)
. (9.17)

as prescribed in Bohr and Motelson [27]. β2 is the quadrupole deformation parameter, β3

the octupole deformation parameter and so on. An important property of deformed nuclei
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is that they can rotate. Rotational bands are detectable in the nuclear level structure much

like the rotational bands of molecules. For a reflection symmetric molecule, all the levels

in a given rotational band have the same parity [1]. Likewise for nuclei. However, nulei

that have a non zero octupole deformation are not reflection symmetric. As a result, it is

possible to have states in the same rotational band which have opposite parity. In fact, one

of the signatures for the existence of possible octupole deformation is the existence of parity

doublets. That is states with the same spin but opposite parity which lie close to each other.

A nice review of the theory and experimental results for octupole deformed nuclei is the

review article [34].

An important question that often arises is how can a nucleus which has spin I = 0, or

I = 1/2 still have a non-zero octupole deformation? We are familiar with the result that

nuclei with I ≤ 1 can not have quadrupole or higher moments. The key difference is that

these deformations are in the intrinsic frame of the nucleus. Isotropy of space implies that

there is no unique direction. Consequently, in the lab frame, the quadrupole, octupole, and

higher moments vanish for these nuclei. We give in equation 9.18 the expression of the

quadrupole moment in the intrinsic nuclear frame and the lab frame [132].

Qspect =
3I2 − I(I + 1)

(I + 1)(2I + 3)
Qint (9.18)

We note from equation 9.18 that the spectroscopic Quadrupole moment vanishes for I ≤ 1

as expected. However, this means that a nucleus with spin 0, or spin 1/2 can still have a

marked quadrupole, octupole and higher order deformations in the intrinsic frame.

There are two effects which lead to the enhancement of the Schiff moment in the lab frame

for an octupole deformed nucleus over a spherical nucleus. Firstly, following the treatment

of Ginges and Flambaum [72], we can relate the Schiff moment in the lab frame to the Schiff
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Figure 9.1: Nuclear Levels of 225Ra. Adapted from [81]. This gives the proposed grouping
of the low-lying states of 225Ra into rotational bands. The presence of levels with opposite
parity in the same rotational band is indicative of the breaking of reflection symmetry, such
as would arise in the case of octupole deformation. We indicate with the red arrows the
ground state and its parity doublet approximately 55 kEV away.

moment in the intrinsic nuclear frame as,

Sz = Sintr
2KM

I(I + 1)

〈ψ−|W |ψ+〉
E+ − E−

(9.19)

where W is some T and P odd interaction. What this expression illustrates is that for a

nuclear ground state with a definite parity, the Schiff moment in the lab frame is enhanced,
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by a factor proportional to the admixture of a nearby state of opposite parity which is mixed

in by the T and P odd interaction. This interaction could be some exotic interaction that

is not described by the standard model. Recall that we said that octupole deformed nuclei

exhibit parity doubling of their nuclear states. Because of this, the energy denominator can

be small—leading to an enhancement of the Schiff moment in the lab frame.

Secondly, as given in [61], for 225Ra, the ground state (Jπ = 1
2

−
)and the nearby excited

state of opposite parity (Jπ = 1
2

+
) are 55 keV apart. They are furthermore understood to be

projections onto good parity and angular momentum of the same “intrinsic state” [47]. As a

result, the intrinsic state expectation value 〈Sz〉intr is larger than in a spherical nucleus. In

particular,

Sintr = eZR3
N

3

20π

∑

l=2

(l + 1)βlβl+1
√

(2l + 1)(2l + 3)
≈ eZR3

n

9β2β3

20π
√
35
. (9.20)

Thus we note that the collective intrinsic Schiff moment is magnified for nuclei with static

quadrupole and octupole deformations. Similarly octupole deformed nuclei that have been

considered for EDM searches are 223Rn, 223Ra, 223Fr [40].

We have described above some signatures of nuclear deformation—namely the presence of

rotational bands and of parity doublets. Other signatures allow for the precise determination

of the deformation parameters. For example, as treated in [1], a nucleus with a pronounced

octupole deformation is expected to have enhanced E1 and E3 transition rates. For example,

the matrix elements of the E3 transitions from the ground state, as given by B(E3) 1 can be

related to β3.

B(E3) =
3

4π
(zeR3)2β2

3 (9.21)

where R is the RMS radius of the nucleus. A compilation of the derived and measured

1. For an electric or magnetic multipole transition described by the operator Oλ,

B(λ; Jiζ → Jfξ) =
1

2Ji + 1
|〈Jfξζ ||Oλ || Ji〉|2
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deformation parameters for a number of nuclei is given in [96]

We note here that the 225Ra has deformation parameters β2 = 0.138, β3 = 0.104, while

199Hg is nearly spherical, with β2 = −0.122, β3 = 0. The intrinsic shapes of the two nuclei

are given in figure 9.2.

Figure 9.2: Shape of the nucleus of 199Hg and 225Ra, as given in equation 9.16. We use the
deformation parameters from [110].

The contributions to the Schiff moment can also be expressed as a sum of terms with

different isospin as in equation 9.22

S = gπNN

(
a0ḡ

0 + a1ḡ
1 + a2ḡ

2
)

(9.22)

gπNN is the strong π nucleon-nucleon couping constant, and ḡi are the isoscalar, isovector

and isotensor contributions to the CP violating gπNN . For example, θQCD is related to the

isoscalar coupling ḡ0 ≈ 0.027θQCD, quark EDMs contribute to the isovector coupling etc [40].

There have been a variety of calculations for the Schiff moment for 199Hg and 225Ra

[61, 13, 152] with varying levels of sophistication. Qualitatively, there is an expectation
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for an enhancement, for the reasons outlined above. The magnitude of the enhancement

depends on the nature of the CP violating nucleon-nucleon interaction. That is whether the

coupling is scalar, pseudo scalar etc. In [92] and [47], Jon Engel and collaborators calculated

the Schiff moments of 225Ra and 199Hg using the SkO Skyrme model.

S199Hg = gπNN

(
0.01 ḡ0CP + 0.074 ḡ1CP + 0.018 ḡ2CP

)

S225Ra = gπNN

(
−1.5 ḡ0CP + 6.0 ḡ1CP − 4.0 ḡ2CP

)
(9.23)

They note that the uncertainty of the coefficients of the CP violating couplings could be up

to a factor of two. However it is clear that were any of the CP violating πNN to be non-zero,

the 225Ra Schiff moment would be larger than the 199Hg Schiff moment by factors of up to

a couple hundred.
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9.2 Search for permanent EDM in ultracold radium atoms

As described in section 9.1, 225Ra has an enhanced sensitivity to CP-odd interactions and is

an attractive system to search for an EDM in. Technically however, it differs from 199Hg in

two fundamental ways which make an experiment of the style of the 199Hg - EDM reported

in [74] untenable. Firstly, it has a very low vapor pressure and an experiment can therefore

not be performed in a vapor cell. Secondly, it is radioactive with a lifetime of 14.9 days. as

a result, the number of atoms available to work with is substantially less, and would decay

away over the course of a couple of weeks.

Our scheme is to load radium atoms into a one dimensional optical lattice which is located

in a region of strong electric field E as well as a uniform and stable magnetic field. There

the atoms will be spin polarized transverse to the magnetic fields and allowed to precess for

some time as described in section 8.3. An EDM signature will be determined by looking for

a correlation in the frequency with the direction of the electric field.

We use a magneto-optical trap (MOT) to accumulate atoms from an effusive source of

radium atoms. In a MOT, the atoms will be cold and dense enough to be efficiently loaded

into an optical dipole trap (ODT). The ODT is used as a shuttle to move the atoms away

from the region of the MOT to a magnetically shielded region—the science chamber. There,

the atoms will be handed off to a one-dimensional optical lattice (formed by a standing

wave) which is located between a pair of field plates. It is then that the atoms will be spin

polarized transverse to the E and B fields and allowed to precess for some time T.

Using an optical lattice to perform and EDM experiment was first discussed by [140].

For the electron EDM, Chin et al. [38] also carried out a thorough study of the possibility

of using Cs in an optical lattice for an electron EDM experiment–quantifying the expected

levels for systematic effects. By trapping the atoms, we can obtain large interrogation times–

enabling high precision frequency determination. As we will discuss below, the systematic
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Figure 9.3: Schematic of experimental layout of Radium-EDM experiment. A radium atomic
beam is created by an effusive oven source. Atoms are slowed down with zeeman slower and
accumulated with MOT. They are then transferred into an ODT formed with a lens on a
long translation stage. As the stage is translated, the atoms will be moved into the science
region which is enclosed in a magnetically shielded region. The top half of the cylindrical
shields have been cut away to show the interior details.

effects due to trapping the atoms in an optical lattice should be sufficiently small in order

to make a competitive experiment using this scheme feasible.

9.3 Sensitivity Estimates

In an EDM experiment, the total sensitivity to the underlying CP violating physics is de-

termined by (1.) The relative enhancement of time and parity odd moments in the atom,

(2.) the total statistical error achieved, and (3.) the total systematic errors. The sensitivity

to the T and P odd interactions is given by the choice of atom, and as we described in

chapter 9.1, 225Ra has an enhancement factor between 2 and 3 orders of magnitude larger

than 199Hg. The limit of the 199Hg experiment is |d199Hg| < 0.49× 10−29e cm [74]. Assuming

an enhancement factor of 100, this means that a measurement on the order of 10−27e cm

would be sensitive to T and P odd interactions on the same scale as the 199Hg experiment.
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Statistical errors can be minimized by integrating for a long time, and by using more atoms.

The noise floor is given by the atom shot noise limit. Systematic errors can be minimized

by good experimental design, such that possible sources of systematic errors are eliminated

or monitored with sufficient accuracy such that appropriate corrections can be made.

9.3.1 Magnetic field stability considerations

In order to achieve the shot noise limited frequency determination given in equation 8.12,

we define the frequency stability per shot as

ξ =
1

2π
√
Nετ

(9.24)

This means that in order to have a shot noise limited frequency error, within a time interval τ

the magnetic field must be stable to the level δB where µNδB = hξ
√
τ . For N = 104 atoms,

with a coherence time τ = 100s, and ε = 0.5, the efficiency with which we can detect the N

atoms contributing to the signal, we have ξ = 225 µHz/
√
Hz, and we require a temporal

magnetic field stability of δB < 2.9× 10−6 Gauss in 100 s.

9.3.2 Statistical Errors

Consider the case where for a time T/2, we measure f−, and for an equal amount of time,

we measure f+. An EDM d would correspond to a frequency shift f+ − f−, with

|d| = h

4E
|f+ − f−|

δd =
h

4E
δf

(9.25)

From equations 8.12 and 8.11, the shot noise limited sensitivity to an EDM δd is then given

by
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δd =
~

2E
√
NεTτ

(9.26)

The near term goals for our experiment, using readily achievable experimental conditions

are given in table 9.1.

Table 9.1: Goals for experimental parameters, and projected sensitivity

Atoms in holding ODT N 1× 104

Electric Field E 100 kV/cm

Total Integration time T 10 days

Spin Coherence Time τ 100 seconds

Detection Efficiency ε 0.5

Frequency difference δf 0.3 µHz

Limit on d δd < 1× 10−26 e cm

9.3.3 Anticipated Systematic Errors and Trap Effects

Systematic errors refer to those effects which if present would mimic a real EDM signal.

They share the common feature that they are correlated with the sign of the electric field.

Two such effects which are particularly important for all EDM experiments are

(1.) The motional magnetic fields: When an atom moves in a non-zero electric field, it

experiences a magnetic field in its rest frame given by Bm = v/c × E. Now, if there

is an additional externally applied magnetic field B0 in the lab frame, and if this field

forms a small angle θEB with the applied electric field, then the total magnetic field felt

by atoms is

B = B0 + θEBBm +
1

2

Bm

B0

(9.27)
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Figure 9.4: Shot noise limited sensitivity as a function of atom number for measurements
lasting 10 days and 100 days. We plot out equation 9.26, using the values given in Table 9.1
for the electric field E, detection efficiency ε, and the coherence time τ

We note from equation 9.27 that we can have a systematic error associated with Bm if

θEB 6= 0. In this case, the total magnetic field at the atoms is directly correlated with the

electric field, and would mimic a real EDM. If θEB 6= 0 however, we a systematic error

can still arise if the field reversal is not exact. This arises because the third term on the

RHS of equation 9.27 would lead to a magnetic field whose magnitude is correlated with

the sign of the electric field [156]. Our sensitivity to motional magnetic fields is grossly

reduced in comparison to experiments in atomic beams [138]. The average velocity of

the atoms in the volume of the optical lattice is 0. To first order, the contribution

to the motional magnetic fields is therefore vanishing. This is also the case with the

199Hg experiment which is performed in a closed vapor cell. Their error budget due to

motional magnetic field is on the order of 1.8 ×1 0−31e cm [74]. We expect to be less
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sensitive to motional magnetic fields than the Hg experiment since our RMS velocities,

and effective volume of the cells are significantly smaller. Therefore, in order to achieve

a statistical limit given in table 9.1, we do not expect the motional magnetic fields to

be a limitation.

(2.) Leakage currents When a high voltage is applied between electrodes in order to gen-

erate a strong electric field, there is a chance that currents would flow between the field

plates if there is a path for the current to go. This leads to a systematic error as there is a

magnetic field associated with the leakage current, and the sign of the induced magnetic

field is correlated with the sign of the electric field. This was particularly troublesome

for the 199Hg experiment which was performed in a vapor cell. Leakage currents were

responsible for the largest item in their error budget–4.53 × 10−30e cm . Because our

field plates are in vacuum, there is no direct path for current to flow near the atoms

contributing to the signal. Furthermore, in vacuum, we are able to apply larger electric

fields without dielectric breakdown. Making very conservative assumptions about the

current path, we believe that we can apply fields up to 100 kV/cm, and achieve the

sensitivity outlined in table 9.1 without being limited by the leakage currents

(3.) Drifting Magnetic Fields The local magnetic field sampled by the radium atoms

contributing to the EDM signal must be well controlled in order to achieve the shot noise

limited uncertainty. We therefore need local magnetometry to monitor the magnetic

fields in order to make appropriate corrections.

(4.) Vector Stark Shift due to Trapping Light In [140], the authors discussed the

impact of a vector stark shift on the performance of an optical lattice in serving as a

trap for atoms in an EDM experiment. It turns out that if the trapping light has some

residual circular polarization, there is a vector stark shift which leads to a differential

shift of the magnetic sub levels MF = ±1/2. This in effect looks like a magnetic field
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B̃, where B̃ ∝ (|εL|2 − |εR|2)k The magnitude of the effective shift goes as

∆f = fv(|εL|2 − |εR|2)m cos θ (9.28)

where θ is the angle between k, the direction of propagation of the laser forming the

lattice and and the static magnetic field B0. Importantly though, this vector shift does

not lead to a systematic effect, as it is not correlated with the sign of the electric field.

It however can lead to enhanced sensitivity to the intensity noise of the trapping laser.

This is because intensity noise would look like magnetic field noise. Magnetic field noise

on the other hand could lead to shortened coherence times. As treated in [140], it turns

out that the diamagnetic atoms are substantially less sensitive to this effect than the

alkali atoms. Technically, to reduce sensitivity to this effect, we arrange the axes such

that θ → 0.

(5.) E1 M1 interference Romalis and Fortson in [140] consider a systematic effect which

might arise in an optical lattice EDM experiment. The effect arises because in the

presence of a non zero electric field, atomic levels acquire small admixtures of opposite

parity states. Consequently, previously forbidden transitions (based on parity selection

rules) such as M1 transitions are suddenly allowed, and can interfere with the allowed E1

transition. As for the vector stark shift above, this effect was calculated to be strongly

suppressed (∼ 10−5 in mercury over the alkali cesium. Radium will also be similarly

suppressed.
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CHAPTER 10

LASER COOLING AND TRAPPING OF RADIUM

Radium (Z = 88) has the electronic configuration [Rn]7s2 in its ground state. It is an

alkaline-earth element and lies immediately below barium in the periodic table. There are

43 known isotopes of radium, four of which are naturally occurring, and none of which are

stable. The four longest lived isotopes of radium are (A = 223, 224, 225, and 226).

Table 10.1: Isotopes of radium with the longest lifetimes along with their nuclear ground
state spins and parities

nuclide half-life spin-parity

223Ra 11.43 d 3
2

+

224Ra 3.63 d 0+

225Ra 14.9 d 1
2

+

226Ra 1600 y 0+

Like most of the other alkaline-earth elements, radium can be laser cooled and trapped.

General treatments of laser cooling and trapping can be found in textbooks [108, 65]. We

will first consider some of the specific features of the atomic structure of radium that are

pertinent for laser cooling.

The earliest atomic spectroscopy of radium was performed in 1934 [137]. In analyzing

a radium arc spectrum, E. Rasmussen identified 13 even and 28 odd parity levels in 226Ra.

H. N. Russell, motivated by the desire to understand astrophysically observed lines [141],

modified some of the assignment of Rasmussen by comparing general trends between the

spectrum of Ra-I and the other alkaline-earth elements.

In the 1980s, with the availability of radioactive beams of radium isotopes at ISOLDE at

CERN, a series of experiments were performed using collinear laser spectroscopy to determine
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Figure 10.1: Level Scheme for 226Ra, showing its low lying energy levels. For reference, the
ionization energy of radium is 42573.01 cm−1.

the nuclear moments of the different isotopes of radium [2, 3, 166, 116]. Currently, atomic

spectroscopy of radium is driven by the promise of radium as a sensitive system for studying

P and T violation, as well as for astrophysics reasons [136]. There has also been quite a bit of

effort in calculating the atomic structure of radium [59, 58, 21, 22, 18]. As more experimental

values of relevant observables become available, the calculations are better constrained.

Consider the level scheme for the radium atom shown in figure 10.1. Laser cooling is most

efficient on a strong transition that is ‘closed’. This means that when an atom is excited,

it has a high probability of returning to the state from which it was excited. When such a

transition is driven repeatedly, a force is applied to the atom which is proportional to the

excitation rate of the transition and the momentum transfer per photon. Starting from the
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7s2 1S0 ground state, the strongest E1 transition is to the 7s7p1P1 level at 483 nm. Another

accessible E1 transition is from the ground state to the 7s7p3P1 level at 714 nm. This singlet

- triplet intercombination line is not fully forbidden due to relativistic effects. Both of these

transitions are quasi-cycling. The branching ratios to dark states are non-negligible, and

active repumping is required in order to maintain the atoms in the cooling cycle.

We compare the values of the parameters relevant for laser cooling using the 714 nm

and 483 nm transitions in table 10.2. While the transition to 1P1 is stronger, and would

consequently be better for capturing atoms, it is less desirable for laser cooling because the

atom is pumped into dark states after only about 500 cycles of the 1S0 to 1P1 transition.

Branching ratios from the 1P1 to lower lying levels are given in figure 10.2, and as can be seen

from the figure, in order to close the leak channels, at least three repump lasers are required.

On the other hand, ground state atoms excited using the 714 nm transition are pumped into

dark states after ∼ 2.4 × 104 cycles. This can be extended to greater than 3 × 107 cycles

with a single repumping laser from the 7s6d3D1 to 7s7p1P1 level at 1428 nm. For the laser

cooling and trapping work described here, we make use of the 714 nm transition for laser

cooling, along with a laser at 1428 nm to repump the atoms back into the cooling cycle.

In other alkaline-earth (and alkaline-earth like) atoms like strontium [94] and ytterbium

[106], the 3D metastable levels are higher lying than the 3PJ levels. Consequently the

3P1 −3 DJ leak channel is non-existent when cooling using the inter-combination transition

for those atoms. Also, the 1S0 −1 P1 line can be used with no repump, as the branching

ratios from the 1P1 to the 3DJ levels is small. Barium and radium atoms however have the

3DJ levels lower than the 3PJ manifold along with rather large branching ratios from 1P1 to

3DJ . Barium trapping nonetheless has been realized by [45], using the strong 1S0 −1 P1 line

along with repump lasers at four different wavelengths.
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Table 10.2: Atomic Properties of Radium Relevant for Laser Cooling

Parameters 1S0 −1 P1
1S0 −3 P1 Units Description

λ 483 714 (nm) Transition Wavelength
k = 2π/λ 130000 87999 (cm−1) Wavenumber

τ 5.5 420 (ns) Atomic State Lifetime

σge = 3λ2/2π 111 243 (10−15 m2) Absorption cross section

Γ = 1/2πτ 28.8 0.38 (MHz) Natural linewidth

Is = πhc/3λ3τ 33.5 0.136 (mW/cm2) Saturation Intensity

amax = ~k/2Mτ 33.0 0.29 (104 m/s2) Maximum Acceleration

ωr/2π = ~k2/4πM 3.76 1.73 (kHz) Recoil frequency

vr = ~k/M 0.36 0.24 (cm/s) Recoil velocity

VD =
√

kBTD/M 15.9 1.8 (cm/s) Doppler Limit Velocity

TD = hΓ/2kB 694 9.1 (µK) Doppler Temperature

Tr = ~
2k2/MkB 0.36 0.16 (µK) Recoil Temperature
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Figure 10.2: Level Scheme of the nine lowest states of 226Ra showing the branching ratios of
state to state transitions. Experimentally measured lifetimes are written in bold font. The
theoretical lifetimes noted in the figure (in square brackets) and branching ratios indicated
are obtained from Bieron et al. [22]. Calculations have also been made by Dzuba et al. [59].
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10.1 Laser Systems

10.1.1 714 nm Laser System

We obtain 714 nm light from a Coherent MBR 110, titanium-sapphire laser. With 15 W of

532 nm pump light (using a Spectra Physics Millenia Laser), we get ∼ 800 mW of light at

714 nm which is distributed to multiple beams for the experiment after being appropriately

frequency shifted. Long term frequency stability of the 714 nm light is achieved by locking

the titanium-sapphire laser to a molecular iodine saturation spectroscopy line. We show a

basic layout of the laser table used in distributing the 714 nm light in figure 10.3.

10.1.2 1428 nm Laser System

We generate 1428 nm light from a diode laser (Sacher LaserTechnik), which can supply up

to 10 mW at 1428 nm. The light is amplified by injection locking an additional diode laser

from QC Photonics, which can supply up to 150 mW. The nominal operating wavelength of

the slave laser is 1425 nm, though with the injection locking, we get it to lase at the desired

1428 nm. The 1428 nm system is locked to a frequency stabilized Helium Neon Laser(Melles

Griot 05-STP-901), which has a specified frequency stability of ±2.0 MHz per hour. This is

implemented via a transfer lock to a hermetically sealed, temperature stabilized Fabry-Perot

cavity.

10.1.3 483 nm Laser System

We generate up to 5 mW of 483 nm light, to excite the 1S0 - 1P1 transition. We make use of

a ∼ 1 cm long PPLN waveguide (From HC Photonics) for frequency doubling 966 nm from

a diode laser. It has a specified doubling efficiency of 150%/W/cm2. With approximately

50 mW of 966 nm light coupled into the waveguide, we generate ∼ 4.5mW of 483 nm light.

131



Figure 10.3: Setup of optics used for generating 714 nm light. The titanium-sapphire laser
generates about 800 mW light at 714 nm, which is distributed to different parts of the experi-
ment. Long term frequency stability is attained by locking to an FM saturation spectroscopy
line in molecular iodine. The AOMs on the paths of the transverse cooling, slower, MOT,
and the ‘4th’ beam are all around 80.0 MHz; deviating from 80 MHz slightly depending on
the detuning desired.

We achieve long term frequency stability of the 483 nm light by locking the 966 nm laser

to the same frequency stabilized He-Ne laser used for stabilizing the 1428 nm light. As in

the case of the 1428 nm system, this is achieved by a transfer lock via a dual wavelength

hermiticaly sealed Fabry-Perot cavity. A schematic of the optics layout for generating and

stabilizing light at 483 nm is given in figure 10.6

132



0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40

-1.0

-0.5

0.0

0.5

1.0

I 2 S
ig

na
l (

ar
b.

 u
ni

ts
)

Wavenumber (cm-1)
13999.0 + 

Figure 10.4: Iodine Saturation spectroscopy line and set points for trapping 226Ra. We lock
the 714 nm laser system to the iodine line indicated by the arrow on the left figure.

Figure 10.5: Setup of optics used for generating 1428 nm light. The Fabry-Perot is locked
to the He-Ne, and the 1428 nm laser is locked to the cavity. Approximately 40 mW of 1428
light is available for use at the atomic beam line.

10.2 Vacuum System

The vacuum hardware is made of standard Type-316 and Type-304 stainless steel parts. We

make use of a number of ion pumps which are shown in figure 10.7. We also make use of
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Figure 10.6: Setup of optics used for generating 483 nm light. We use a PPLN waveguide to
frequency double 966 nm light. The frequency stabilization is achieved by locking the 966
nm to a frequency stabilized He-Ne. Up to 2 mW of 483 nm light is available for use at the
atomic beam line

a non-evaporable getter pump, as well as a titanium sublimation pump in order to pump

the hydrogen from the chamber. The Transverse cooling/oven chamber (known as the ‘front

end’)is the higher pressure part of the beam line. This is due to elevated out-gassing rates

from the heated parts of the oven. Also, the ‘front end’ is frequently vented when the source

is being reloaded. We have some degree of differential pumping between the two chambers,

as the Zeeman slower serves as a conductance limiter. With the oven operating at 500◦C,

we maintain equilibrium pressures of ∼ 3×10−8 Torr in the transverse cooling chamber, and

∼ 1 × 10−9 Torr in the MOT chamber. Most of the residual gas in the vacuum system is

hydrogen as indicated by a residual gas analyzer (RGA) scan.
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Figure 10.7: Schematic of atomic beam line

10.3 Atomic Beam Generation and Slowing

10.3.1 The Oven

We obtain 226Ra and 225Ra in the form of RaNO3 dissolved in 0.1M nitric acid. In order to

create a beam of metallic radium, we must

(1.) chemically reduce the radium salt to elemental radium.

(2.) heat up the sample so that the vapor pressure is high enough to yield an effusive beam

which we can work with for a couple of weeks, but not too high that the source is

consumed very quickly.

For all the studies described here 226Ra is used. Even though the interesting isotope

for EDM studies is 225Ra, the long lifetime of 226Ra makes it a convenient isotope for un-

derstanding and perfecting techniques for handling radium in optical traps. Up to 500 µCi

(i.e. 500 µg) of 226Ra in the form of RaNO3 in 0.1M Nitric acid is pipetted onto a piece of

aluminum foil. The acid is allowed to evaporate, and then the foil containing the radium

along with a piece of metallic barium, (≈ 50 mg) is placed in a crucible. The crucible is made
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of titanium, and serves as a sample holder while the sample is heated. There is a nozzle on

the output (i.e. front) end of the crucible. On the rear end of the sample holder is a slot for

a thermocouple, which we use to monitor the temperature. See figure 10.8 for details.

Figure 10.8: Schematic of the oven along with the the crucible, which holds the radium
atoms. The heater elements are operated such that the crucible is radiatively heated to
temperatures of ∼ 500◦ C, as recorded by the thermocouple shown in the figure

The heater element for the oven consists of a pair of windings of tantalum wire, which

surround the crucible assembly. By running ∼ 3.5 Amps through the heater element, we can

radiatively heat the crucible to temperatures over 600 ◦C. Surrounding the heater element is

a copper heat shield around which cooling water flows. A schematic of the oven and crucible

assembly is shown in figure 10.8.

The very first time we insert a new sample, we need to ‘break-in’ or ‘crack’ the load.

This involves heating the crucible while monitoring the flux of atoms in the emerging atomic

136



beam. Initially, no beam is detected. At a critical temperature ∼ 620◦C, we believe that the

chemical reaction leading to the reduction of the RaNO3 by barium occurs. This leads to

the release of metallic radium atoms. Thereafter, we can operate the oven at more modest

temperatures and still have a strong flux of radium atoms. For day to day operations, we

typically operate the oven at ∼ 500 ◦C. As we use up the inventory of radium loaded, we

gradually increase the operating temperature in order to maintain a comparable atomic flux

to when the oven was newly loaded.

10.3.2 Transverse Cooling / Zeeman Slowing

We increase the forward brightness of the atomic beam that emerges from the oven by having

it pass through a stage of transverse laser cooling [108]. We typically use about 60 mW of 714

nm light for cooling the two transverse dimensions. When optimally aligned, the transverse

cooling stage leads to an increase in the loading rate of the magneto - optical trap by up to

a factor of 80.
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Figure 10.9: Designed field of the zeeman slower is shown on the left panel. The atomic
beam velocity distribution at T = 500 ◦ C. The shaded region shows the fraction of the
atoms emitted from the atom that are slowed down with a 1 m long 714 nm Zeeman slower.
With a most probable velocity of 250 m/s, this corresponds to ≈ 3 × 10−3 of the forward
flux. In the future, we expect to capture a larger fraction of the atoms in the distribution
by making use of 483 nm slowing stage.

Radium atoms emerge from the transverse cooling region with a longitudinal velocity
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profile given by a Boltzmann distribution characteristic of the oven temperature.

f(v) =
M2

2k2BT
2
v3 Exp

[−Mv2

2kBT

]

(10.1)

At ∼ 500 ◦C, the most probable velocity of the atoms is 250 m/s. On the other hand, the

maximum acceleration of the atom due to the scattering of 714 nm photons is 2900 ms−2.

With MOT beams approximately 40 mm in diameter, this leads to a MOT capture velocity

of ∼ 30 m/s. With the constraint of the Zeeman slower being 1 m long, we can at best

slow down ∼ 3× 10−3 of the atoms effusing from the oven. The magnetic field profile of our

Zeeman slower, along with the thermal velocity distribution of radium atoms emerging from

the oven is shown in figure 10.9.

10.4 Magneto-Optical Trap of Radium

We construct a MOT of radium atoms from the combination of a 3-dimensional optical

molasses formed from 714 nm light, a quadrupole magnetic field with a field gradient of 1

Gauss/cm near the field minimum, and a single repump laser at 1428 nm. The first radium

MOT was reported from our group in 2007 by Guest et al. [77].

We detect atoms in the MOT by collecting fluorescence onto a photo-multiplier tube,

or by imaging the atoms with a CCD camera (Andor Luca-R). For PMTs, we use photon

counting modules (H7421) from Hamamatsu which have a quantum efficiency of 10 % at

714 nm. The advantage of using the PMT over the camera is that we can get very fast

response. Because the lifetime of the 3P1 level is 420 ns, we can excite the atoms, and turn

off the light before all of the atoms spontaneously decay back to the ground state. In order

to implement this, we amplitude modulate the light going to the MOT beams at 1 MHz,

with a on/off duty cycle of 0.5. We then only consider the photons that are scattered in
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coincidence with the ‘off’ phase of the MOT beam chopping. This yields excellent background

reduction. Using this scheme, we can have sensitivity to a few atoms in the MOT. However,

the fast modulation scheme is still very useful in a time of flight temperature measurement

as described in Appendix A, and for atomic beam fluorescence measurements because of the

dearth of signal carrying photons compared with scattered light.

10.4.1 Blackbody Repump Dynamics

As mentioned above, we repump atoms in the MOT using the 3D1 −1 P1 transition. The

3D1 level is fed from the 3P1 level with a branching ratio of 5× 10−5. Once in an average of

20000 cycles on the 714 nm transition, a radium atoms falls into the 3D1 level. If the atoms

are not repumped from the 3D1, they begin to fall freely under gravity, and to decay to the

3P0 level. With no repumping, the mean lifetime of the atoms in the 3D1 level is ∼ 700µs.

Now, because of the relative spacing of the states in the 3DJ and 3PJ manifold, it turns

out that there is a significant overlap in the room temperature blackbody photon spectrum

with the frequencies for transitions between the metastable levels. In other words, atoms

which fall into the 3P0 level have a significant probability of being repumped to 3D1 by

room temperature blackbody photons. Likewise, atoms can be repumped by blackbody

photons from 3D1 to the 3P1 level. Guest et al. [77] reported results that support this

picture of blackbody repumping. The blackbody repumping mechanism also helped explain

the performance of the 225Ra MOT with only one repump laser. Because of its hyperfine

structure, the 3D1 and 1P1 levels are both split into two levels (F = 3/2 and F = 1/2) in

225Ra. Instead of having one transition from 3D1 to 1P1, there are consequently four. Guest

et al. were able to sustain a 225Ra MOT by repumping on only one of the four available

transitions from 3D1 to 1P1 [77]. They could get away with doing so because the room

temperature blackbody photons remixed the population, such that those atoms which had
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fallen into an un-pumped hyperfine level were given a second chance at being repumped by

being excited back to 3P1 by the ambient photons.

0.8 Amps 2.0 Amps 2.8 Amps 3.6 Amps 5.2 Amps

Figure 10.10: Compressing Atoms in MOT by increasing Magnetic field gradient [124]. This
enables us to have increased sensitivity in detecting the presence of atoms, and also in
increasing the spatial overlap with an optical dipole trap.

10.4.2 Operating Modes

As we described in section 9.2, the purpose of the MOT is to serve as an atom accumulator

which is used to load an optical dipole trap. We have three basic operating conditions namely

Loading In this mode, we operate the MOT in a manner whereby we optimize the loading

rate of atoms into the MOT. The magnetic field gradient of the MOT is ∼ 1 Gauss/cm,

and the laser is detuned to ∼ 3 linewidths.

Probing In the probing mode, we optimize the signal to noise ratio with which we can

detect the atoms in the MOT. This is particularly important when we need to detect
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very few atoms. We increase the magnetic field gradient to up to 5 Gauss/cm because

it leads to a more compact cloud and a consequently higher SNR. Furthermore, having

a compact MOT is advantageous when we transfer atoms from the MOT into an optical

dipole trap (ODT), as it enlarges the spatial overlap of the MOT cloud with the dipole

trap. This will be treated in chapter 12.

Cooling In this operating mode, we tune the system in order to minimize the temperature

of the atomic cloud. It is in this stage that the atoms are transferred into a far off

resonance optical dipole trap.

We give a table of the set points for the different modes of operation in 10.4.2.

Table 10.3: Settings for lasers and magnetic field gradients during the loading and probing
and cooling phases of the 226Ra MOT. The given intensities for the MOT are for a single
beam. Γ = 2π × 380 kHz, Is = 140 mw/cm2

Slower MOT T C B-Field Gradient

∆f I ∆f I ∆f I (Gauss/cm)

Loading −3Γ 20Is −3Γ 20Is 0 20Is 1

Probing Off −1.5Γ Is Off 5

Cooling Off −Γ Is Off 5

10.4.3 Outlook for Improvement

Large atom numbers are critical for the success of an EDM search with trapped radium

atoms. Presently, depending on the age of the oven load and the operating temperature, we

can accumulate up to 105 atoms in the MOT. The measured lifetime of the MOT is about

25 seconds, and is limited predominantly by collisions with background gas. Future work

to improve the total number of atoms available would include improving the quality of the
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vacuum from 10−10 Torr to 10−11 Torr. This would allow for the accumulation of atoms over

a longer period. Another step that would improve the loading rate of the apparatus involves

using the 483 nm transition to slow atoms down. Because it is two orders of magnitude

stronger than the 714 nm transition, a larger fraction of the thermal velocity distribution

can be captured. We consider the relative gains that would be made for a slower of length

L0 by integrating equation 10.1 up to a maximum velocity v0 =
√

L0 amax/2. For example,

with a 10 cm long slower, a capture velocity of 181 m/s is obtained. In order for this to be

feasible however, repumping from the 3D1, 3D2 and 1D2 must be implemented due to the

large branching fractions to them from the 1P1 level.

Figure 10.11: The fraction of atoms emitted by the oven which are slowed down by the
Zeeman slower as a function of the capture velocity. The oven is assumed to be operating at
500 ◦ C. We use an average deceleration of amax/2 for 714 nm and 483 nm, as given in table
10.2

In chapter 11, we will describe a measurement of the 7s6p1D2 atomic lifetime of 226Ra.

This measurement was our first use of the ultracold sample of radium atoms to study radium

atomic structure. We will also, in chapter 12 describe our proposal to further study radium
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atomic structure by determining the differential DC polarizabilities of two transitions in the

radium atom.
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CHAPTER 11

LIFETIME OF THE 1D2 ATOMIC STATE OF RADIUM

We have published the contents of this chapter before in [160]. Some sections of the text are

reproduced verbatim.

11.1 Motivation

Radium is the highest-Z neutral atom for which laser cooling and trapping have been demon-

strated [77]. This makes it an attractive candidate for tests of fundamental symmetries,

since relativistic and finite-size-nuclear effects are enhanced in heavy atoms and since laser

techniques permit long observation times and potentially precise measurements with small

samples.

There are two transitions from the ground state that can be used for laser trapping

and cooling of atomic radium (see figure 10.1). The intercombination transition 1S0 - 3P1

(τ = 422 ns) at 714 nm can be repeatedly excited to provide a maximum acceleration of

3·103 m s−2. This transition is quasi-cycling, with an estimated branching ratio of 5·10−5 to

3D1. This causes illuminated atoms to decay to 3D1 in about 20 ms, but a single repump

laser tuned to the 3D1 - 1P1 transition at 1428 nm is sufficient to bring the atoms back

into the cooling cycle. The other possible transition is the allowed 1S0 - 1P1. Compared

to the intercombination transition, the singlet-to-singlet transition has a stronger transition

strength and a shorter wavelength, consequently it can be used to achieve an acceleration

as large as 3·105 m s−2, 100 times larger than the first scheme. However, the 1P1 state has

much stronger leak channels. The branching ratio to 1D2 and triplet D states is estimated

to be 2·10−3. Consequently, a radium atom can scatter on average only 500 483 nm photons

before going dark. Recent work demonstrating the trapping of neutral barium has shown that

manipulation of such “leaky” atomic systems is possible with sufficiently numerous repump
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lasers [45]. The work presented here will help evaluating the feasibility of using the 1S0 -

1P1 transition for more efficient slowing and trapping of radium by measuring previously

unknown lifetimes and branching ratios of excited states in radium.

The lifetime of the 1D2 has been calculated a number of times and the results range from

129 µs to 1.37 ms (see Table 11.1 for references). The difficulty in atomic theory arises from

a near cancellation of two large transition amplitudes [54]. Previous determination of the

3P1 lifetime was performed by our group using a thermal beam of radium atoms [146]. The

long lifetime of 1D2 makes that approach difficult. Instead, the measurement presented here

is performed on cold 226Ra atoms prepared in a magneto-optical trap (MOT). This work

represents only the second experimental determination of an excited state lifetime in atomic

radium. It will help anchor atomic theory calculations and better model the interaction

between the radium atom and lasers used to manipulate it.

11.2 Experimental Details

The apparatus for laser cooling and trapping of radium atoms is described in detail in [77]. In

short, neutral 226Ra (t1/2 = 1600 yr) atoms emerging from a thermal atomic beam source at

500 C are transversely cooled, slowed down in a Zeeman slower, and captured in a MOT, all

by exciting the intercombination transition, 1S0 - 3P1, at 714 nm. A diode laser at 1428 nm

is tuned to the 3D1 - 1P1 transition and overlapped with one of the MOT beams to repump

atoms from 3D1. Typically 500-1000 cold 226Ra atoms are captured in the MOT with a trap

lifetime of 2 s.

Light at 483 nm was produced by frequency doubling a 100 mW diode laser at 966 nm in

a 1.0 cm periodically poled lithium niobate waveguide. This laser was stabilized to a helium-

neon-laser referenced Fabry-Perot cavity. Blue light with an intensity of 100 mW cm−2 was

directed into the MOT at a 5 degree angle to one of the MOT beams and was retro-reflected
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Figure 11.1: In measuring the 1D2 lifetime, we populated the 1P1 level by turning on a
resonant 483 nm beam for some time. Thereafter, the excited atoms cascaded down to the
ground state. The longest lived state on the path was the 1D2 level. By measuring the
arrival time of 714 nm photons after the 483 nm pulse, we determined the 1D2 lifetime ,τ .
Branching ratios are obtained from theory [22, 58]

using a lens and mirror to adjust the intensity of the reflected beam. When tuned to the

1S0-1P1 resonance, the blue laser pumps atoms to the metastable states, causing loss from the

trap. The 483 nm laser frequency and beam pointing is adjusted for maximal trap loss at low

intensity. The 1S0-1P1 resonance frequency in 226Ra was measured to be 20715.598(4) cm−1

using a laser wavelength meter (Bristol Instruments 621). This value is 0.1 cm−1 below the
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Table 11.1: Summary of theoretical estimates of the value of the 1D2 lifetime.

Work Theory Experiment
[58] 710 µs
[59] 129 µs
[22] 1.37 ms
This work 385(45) µs

value determined from grating spectrometer measurements in the 1930s [111, 137] and places

the 3D1 level at 13715.76 cm−1 based on the measurement of the 3D1-1P1 wavelength [77].

For the lifetime measurement, the trapping light at 714 nm and the repump light at 1428

nm are kept on for 990 ms in the atom capture phase, and are then blocked by mechanical

shutters for 10 ms in the measurement phase. The two phases cycle at 1 Hz rate. To keep the

detector dark counts low, the detector is shuttered with a mechanical shutter that is opened

only after the MOT light is shuttered. During the first 5 ms of the 10 ms measurement phase,

the cold atoms fall while the detector shutter opens. They are then excited by a 100µs pulse

of 483 nm light on the 1S0 - 1P1 (τ ∼ 5.5 ns) transition. Fast amplitude modulation of the

483 nm light is achieved with an acousto-optical modulator. Each excited atom emits either

a blue photon at 483 nm or decays to one of the excited metastable states. Those metastable

states then eventually decay to the ground state. Theoretical branching ratios predict that

most of the atoms pumped to 1D2 will decay by emitting a single red photon at 714 nm while

the atoms pumped to other states will not decay rapidly via 3P1. The atomic fluorescence

at 714 and 483 nm is separated by color with a dichroic mirror and optical band-pass filters

and detected by two separate photo-multiplier tubes. A computer-based data acquisition

system records the arrival times of the detected photons.
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11.3 Results

Figure 11.2 a shows the red fluorescence collected from the MOT when the blue pulse is

applied without shuttering the MOT beams. During each blue flash, the MOT fluorescence

promptly decreases, declining to nearly background levels by the end of the pulse. Between

5% and 20% of the MOT fluorescence returns within 1 ms of the end of the blue flash. The

relative intensities of the incoming beam and its reflection were adjusted to maximize the

fraction of atoms which returned following the flash.

Figure 11.2 b shows the red fluorescence collected from the atoms when the MOT light is

blocked. Red fluorescence rises during the blue exposure and falls following it. The delayed

red fluorescence is observed only when the blue laser is tuned to the 1S0 - 1P1 resonance.

The arrival-time histograms were fitted using maximum likelihood and weighted least-

squares. Data from 1 ms before and 3.5 ms after the blue exposure were used, while the

rising red fluorescence during the blue flash was ignored in finding the lifetime. Since the

count rates in the detector were low, maximum likelihood was chosen as the more appropriate

algorithm, though the two techniques agreed within their uncertainties. Data taken under

the same experimental conditions were summed; three separate experimental conditions were

fitted separately. The data taken with the blue beams imbalanced and with the repump on

during the blue pulse, had longer but insignificantly different fitted lifetimes. A weighted

average of the three fits gives a lifetime of 385(22) µs.

The observed delayed red fluorescence could be influenced by factors other than the 1D2

lifetime. In a previous work it was observed that room-temperature blackbody radiation

pumps atoms from 3P0 to 3D1 at a rate of 200 Hz[77]. The radiation should also pump

atoms from 3D1 to 3P1 at approximately 40 Hz. This would introduce an additional decay

mechanism for the red fluorescence and could bias the lifetime as much as 5% toward longer

lifetimes if the population in the 3D1 state is as large as 75%. In order to test whether the
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Figure 11.2: (a) Suppression of MOT fluorescence at 714 nm caused by 483 nm light pumping
radium to metastable states. This panel represents data accumulated for 11 minutes with
the MOT beams kept on. (b) 714 nm flash following 483 nm excitation of radium atoms
shows the decay of 1D2. The MOT beams are off for the collection of these data. This
panel represents data accumulated for 10 hours with the timing structure in (c). (c) Timing
diagram of the measurement procedure.

population of cold atoms in the 3D1 state affected the lifetime measurement, some of the

data were taken with the 1428 nm laser on during the blue pumping. No effect was resolved.

The scattering of blue light pushes the atoms, and the motion of the atoms out of the

viewing area of the detector could bias the resulting lifetime measurement. The atoms can
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Table 11.2: Error budget.

Effect Contribution
black-body repumping from 3D1 19
motion from recoils 31
motion from gravity 5
statistical 26
Total 45 µs

scatter an average of 500 blue photons before decaying to the 1D2 metastable state. 500

single-photon recoils at 483 nm confer an average velocity of 2 m s−1 to the atoms. During

the duration of the delayed red flash the recoiling atoms can move an average of 1 mm,

comparable to the 4 mm diameter viewing area of the detector. To test whether the atoms

were leaving the viewing area before the decay was finished, we took some of the data with

the retro-reflection blocked, providing a maximum imbalance in the momentum imparted by

the blue pump beam. The lifetime measured with a maximally imbalanced blue excitation

was longer by 8% than the lifetimes taken with balanced beams, less than the 13% statistical

uncertainty. The failure of an imbalanced beam to shorten the measured lifetime is evidence

that the motion of the atoms out of the field of view of the detector does not influence the

lifetime measurement at the 10% level.

The radium atoms can also move away from the viewing region due to its initial velocity

(∼3 cm s−1, 150 µm in 5 ms) and to falling under gravity (125 µm in 5 ms). Both effects

are small compared to the effect of pushing by the blue light.

11.4 Discussion

The lifetime of 1D2 is expected to be dominated by the decay branch to 3P1. The presence of

the former state complicates cooling using the 483 nm transition by sequestering atoms and

preventing them from participating in cooling for fractions of a millisecond. this measurement
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permits more accurate modeling of the atomic populations in the presence of 483 nm and

repumping light.

This measurement of the radium 7s6d 1D2 lifetime is limited by statistics; larger num-

bers of trapped atoms would permit more thorough investigation of systematic shifts to the

measured decay, particularly experimental limits on the shifts caused by imbalanced forces

and the viewing area of the detector

In addition to excited-state lifetimes, experiments with cold radium atoms can also probe

hyperfine splittings in some excited states and atomic polarizabilities to provide experimen-

tal anchors for the models of the atomic wave functions. It is interesting to note that

the metastable states with the longest radiative lifetimes 3P0 and 3D3, will absorb room-

temperature blackbody photons in 5 and 200 ms respectively, limiting the prospects for

room-temperature experiments in metastable states of radium. The 3D2 state, only 5 cm−1

below3P1, is only slightly affected by blackbody radiation.

In summary, this lifetime measurement for 1D2 and refinement of the energies of the

7s7d 1P1 7s6d 3D1 levels in atomic radium should permit the construction of more accurate

models of the atom, both for predicting the distribution of the atoms in their internal states

for experiment, and for interpreting the observable signatures of interesting physics arising

from interactions with the nucleus.
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CHAPTER 12

AC AND DC STARK SHIFTS IN RADIUM

The Stark shift of an atomic level in the presence of an external electric field is a function

of the frequency of oscillation of the field, and so we distinguish between DC and AC Stark

shifts. Recall from our discussion in chapter 8 that as a consequence of parity and time-

reversal symmetry, a non-degenerate eigenstate cannot have a permanent electric dipole

moment. In other words, given a state ψa(J) with an energy εa, The first order perturbation

to its energy due to the coupling of a permanent electric dipole moment µ =
∑

i eri to the

electric field E vanishes.

H(1)
a = 〈ψa(J)|µ · E |ψa(J)〉 = 0 (12.1)

However, a non-degenerate eigenstate can have an induced electric dipole moment. This

can be seen by considering its coupling to other states in the system in the presence of an

external electric field. In second order perturbation theory, the shift of an atomic level as a

function of applied electric field which oscillates at a frequency ω is,

H(2)
a =

∑

n

〈ψa(Ja)|µ · E |ψn(Jn)〉 〈ψn(Jn)|µ · E |ψa(Ja)〉
εa − εn − ω2

(12.2)

Here ~ = c = 1 and the sum is over eigenstates of the unperturbed states of the system |ψn〉.

Following the derivation in [9], the quadratic Stark shift of a state with quantum numbers

(J,M)) takes the form

W (J,MJ) = −1

2
α(0)(J)E2 − 1

4
α(2)(J)

(3M2
J − J(J + 1))

J(2J − 1)
(3E2

Z − E2) (12.3)

where α(0) and α(2) are the scalar and tensor polarizabilities respectively. The direction of
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the electric field is chosen as the quantization axis. In terms of the reduced matrix elements,

α(0)(Ja) =
2

3(2Ja + 1)

∑

n

(−1)Ja−Jn
(εa − εn) |〈Ja ||µ || Jn〉|2

(εa − εn)− ω2
(12.4)

and

α(2)(Ja) =

√

5

6

Ja(2Ja − 1)

(2Ja + 3)(Ja + 1)(2Ja + 1)

×
∑

n

(−1)Ja−Jn







1 1 2

Ja Ja Jn







(εa − εn) |〈Ja ||µ || Jn〉|2
(εa − εn)− ω2

.

(12.5)

In the case where we have a nuclear spin I 6= 0, the good quantum number is F = I + J ,

and each magnetic sub level is shifted an amount given by [88]:

W (F,mF ) =− 1

2
α(0)(F )E2

− α(2)(F )
[3M2

F − F (F + 1)][3X(X − 1)− 4F (F + 1)J(J + 1)]

(2F + 3)(2F + 2)2F (2F − 1)2J(2J − 1)
(3E2

Z − E2)

(12.6)

where

X = F (F + 1) + J(J + 1)− I(I + 1). (12.7)

It follows then from equation 12.5 that the tensor polarizability α(2) vanishes for J = 0 or

J = 1/2. Other slightly different expressions for the scalar and tensor polarizabilities are

reported in the literature such as [79]. Their results are equivalent to 12.4 and 12.5 in the

second order of perturbation theory.
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12.1 Proposal for experimentally determining DC polarizabilities

of radium

We propose an experiment to determine the differential DC polarizabilities of two transitions

in radium namely the 7s2 1S0 → 7s7p 3P1 transition at 714 nm, and the 7s2 1S0 → 7s7p 1P1

transition at 483 nm. The idea is to measure the transition frequency as a function of an

applied electric field, and based on which the differential scalar and tensor polarizabilities

will be derived.

The motivation for these experiments is two fold. First, it will yield interesting prop-

erties of radium atoms that will help anchor atomic structure calculations. Secondly, it is

important to understand the induced dipole moments of radium, as we aim at setting limits

on the possible existence of its permanent electric dipole moment. Furthermore, many of the

experimental techniques that we propose to use in determining the DC polarizabilities are

the same as those required for implementing the permanent EDM measurements proposed

in section 9.2.

12.1.1 Estimates for DC polarizabilities of low lying states in radium

No measurements of the DC polarizabilities of radium have been performed. Some atomic

lifetimes and energy levels have been experimentally determined. With the few experimental

results serving as checks, theorists have published compilations of matrix elements for state

to state transitions. Atomic structure calculations in radium have been published by Bieron

et al. [20, 19, 23] and Dzuba et al.[56, 57]. Applying the published results from Dzuba

et al. for the lowest states, as well as some unpublished results we obtained from private

communications [55], we use equations 12.4 and 12.5 to calculate the polarizabilities of the

lowest lying 1S0, 1P1, 3P1 and 3D2 states in radium. The calculations include their coupling

to the 30 lowest lying states. These calculations give us a sense of the scale of the shifts
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we need to resolve in order to perform an experimental determination of the differential

polarizabilities.

We report our estimates for the DC polarizabilities for select states of 226Ra in table 12.1

given in cgs units 1

Table 12.1: Estimates for the DC polarizabilities for states in 226Ra, given in cgs units.

α(0) (cm3) α(2) (cm3)

1S0 3.21× 10−23 -
1P1 −1.5× 10−23 −2.96× 10−24

3P1 −2.8× 10−20 2.6× 10−21
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Figure 12.1: On the left panel, we have the calculated DC Stark shift for ground state1S0

and 1P1 manifold. On the right panel, we have the calculated DC Stark shift for states in
the 3P1 and 3D2 manifold. Because of the near degeneracy between 3P1 and 3D2, they are
strongly mixed leading t0 the large polarizabilities. The direction of the electric field defines
the quantization axis z.

1. Polarizabilities have units of volume. In atomic units, they are given in terms of a30. In cgs, units, they
are given in cm3, while the conversion to SI units is α(Cm2/V) = 4πε0 × 10−6α(cm3) = 1.11265× 10−16 ×
α(cm3). When measuring polarizabilities using optical methods, it is convenient to represent α in units of
MHz/(V/cm)2. The conversion from cgs units is α(cm3) = 5.95531× 10−16α[MHz/(V/cm)2]
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Figure 12.2: Calculated DC Stark Shift for 483nm and 714nm transitions as a function of
applied electric field. Note the difference in scale of the vertical axes. The 3P1 level is much
more polarizable mainly because of its near degeneracy with the 3D2 level.

12.1.2 Distinguishing between scalar and tensor contributions

In order to discriminate between α(0) and α(2), we propose to measure transitions in the odd

isotope 225Ra along side measurements on 226Ra. This is because for 225Ra, the differential

polarizability for the transition [1S0,F = 1/2 →1 P1,F = 1/2] is purely due to the differential

scalar polarizability of the two levels, whereas in 226Ra, [1S0 →1 P1] has contributions from

both α(0) and α(2). Likewise [1S0,F = 1/2 →3 P1,F = 1/2] has vanishing contributions

from α(2). The measurement in 225Ra can therefore serve to isolate the scalar and tensor

polarizability contributions on both transitions.
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12.1.3 Experimental details

The differential DC Stark shifts will be measured by performing absorption spectroscopy

on a sample of radium atoms trapped in a one-dimensional optical lattice that is located

between a pair of electrodes. A schematic of the experimental arrangement is shown in

figure 12.3. An optical lattice is a standing wave optical dipole trap (ODT). We will discuss

ODTs in more depth in section 12.2. As a result of the lattice, the atoms contributing to

the absorption signal will also experience an AC Stark shift. The AC Stark shift is however

independent of the applied DC field and simply serves as a constant offset that can therefore

be subtracted out.

Figure 12.3: Schematic of atoms in optical lattice with radium atoms between high voltage
electrodes. By applying ±10 kV on the electrodes, we can apply electric fields up to 100
kV/cm. We shall then measure the absorption spectra as a function of applied electric field.

In order to have the atoms situated in an optical lattice as shown in figure 12.3, we must

perform a number of operations which are depicted in frames A to D of figure 12.4. Frame

A depicts the accumulation of radium atoms in a MOT. At the same time, an optical lattice

is constructed in the science chamber. Accumulating atoms in the MOT involves operating

the apparatus in ‘Loading Mode’ as described in chapter 10. The duration of MOT loading

depends on the MOT lifetime, as well as on the desired repetition rate of the experiment.

The next step, shown in frame B, is to transfer the radium atoms from the MOT into

a traveling wave ODT (the bus-ODT), and to translate it, along with the atoms from the

MOT to the ‘science’ chamber. We describe in section 12.3.1 our procedure for transferring

atoms from the MOT to the ODT. This is typically a very fast operation which takes a few
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hundred milliseconds. We report our studies of transporting atoms using the bus-ODT to

the science chamber in section 12.3.3.

Once the atoms arrive at the science chamber, the bus-ODT is made to overlap with

the optical lattice. We depict in frame C the ‘hand-off’ of atoms from the bus-ODT to the

lattice. This is work that is currently underway. We envision using an optical molasses to

provide the necessary cooling needed to transfer the radium atoms from one conservative

potential to another.

Finally, the measurement-ready condition is shown in frame D, where the radium atoms

are trapped in the optical lattice between a pair of electrodes. The measurement will in-

volve absorption spectroscopy of the atoms by illuminating them with 714 nm and 483 nm

light in order to determine the differential polarizabilities of the 7s27s7p1S0 − 7s7p3P1 and

7s27s7p1S0 − 7s7p1P1 levels respectively.

Figure 12.4: Sequence of steps for locating radium atoms in science chamber. In frame (A.)
atoms are accumulated in a magneto-optical trap. (B.)The radium atoms are transferred
into a traveling wave ODT. (C.) The traveling wave ODT is translated a distance of 50
cm to the science chamber, where it is overlapped with a one dimensional optical lattice.
After effecting a ‘hand-off’ from the traveling wave trap to the optical lattice, the Bus ODT
returns to the MOT to pick up the next shuttle of atoms. Absorption spectroscopy will then
be performed on the sample of trapped atoms between the electrodes.
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12.2 Optical dipole trapping of radium

As given in equations 12.2 to 12.5, the energy levels of an atom are perturbed in the presence

of an AC electric field associated with a laser. We define a detuning ∆ = ω−ω0, where ω is

the frequency of the ODT laser, and ω0 is the energy required to connect the ground state

to the lowest lying excited state by an E1 transition.

The AC Stark shift of the ground state can be exploited such that it serves as a potential

that can trap atoms if the electric field is engineered in a manner whereby there is a spatial

dependence of the ground state shift that yields a restoring force in all three dimensions. Such

a trap is referred to as a far off resonance trap (FORT) or an optical dipole trap (ODT).

It can be formed by focusing a laser beam down to a spot. If the laser frequency is red

detuned, i.e. ∆ < 0, the ground state atoms are attracted to the focus of the light, as that is

where the electric field (and consequently AC Stark shift) is greatest. Similarly, if the laser

frequency is blue detuned, the atoms will be repelled from the focus of the beam. Excellent

reviews of applications of ODTs in different branches of physics are given in [75, 108].

Consider for example a Gaussian laser beam with power P0 in Watts and wavelength λ

that is focused down to a waist w0, located at the point z = 0. The intensity profile of the

focused light is2

|E(x, y, z)|2 ∝ E2
0

1 + ( z
zR
)2

exp

[

−(x2 + y2)

w(z)2

]

(12.8)

where E0 is the maximum electric field, the spot radius at point z is w(z), and Rayleigh

length zR are given by

w(z) = w0

√

1 +
z

zR

zR =
πw2

0

λ
.

(12.9)

2. For a Gaussian laser beam with power P0 and intensity profile I(r, z) = I0 exp[−2r2/w(z)2], the peak

intensity I0 = 2P0/πw
2
0, and the peak electric field is |E0|2 = 4P0/ε0cw

2
0
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From equation 12.3, the electric field induces a dipole moment p = α0E. The interaction

potential between the induced dipole and the electric field of the laser is given by

Udip = −1

2
〈d · E〉 (12.10)

where the factor of 1/2 is due to the fact that the dipole is induced, and we take the

time average of the electric field–picking up an additional factor of 1/2. Consequently, the

potential due to an ODT formed by a Gaussian beam is

UODT (x, y, z) = − U0

(1 + ( z
zR
)2)

exp

[

−x
2 + y2

w(z)2

]

(12.11)

where U0 = −1
4
αE2

0 . We note that equation 12.11 has cylindrical symmetry, and so, setting

r2 = x2 + y2 and expanding 12.11 for small values of z/zR and r/w0, we get

UODT (r, z, φ) ≈ −U0 +
U0

z2R
z2 +

2U0

w2
0

r2 = −U0 +
1

2
Mω2

zz
2 +

1

2
Mω2

rz
2 (12.12)

That is, near the trap minimum, the trap is harmonic and is characterized by a longitudinal

frequency ωz =
√

2U0/mz2R and a radial frequency ωr =
√

4U0/mw2
0. For atoms in a

harmonic potential at a temperature T, the phase-space distribution of the atoms is given

by the expression

W (x,p) ∝ n(x)

(2πMkBT )3/2
exp

[
H(x,p)

kBT

]

(12.13)

where H(x,p) = p2/2M + U(x). The spatial distribution can be obtained from integrating

over the momentum to get

n(x) =

∫

W (x,p) d3p. (12.14)
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Using 12.12 for U(x), we obtain

n(r, z) ∝ exp−
[
r2

σ2
r

+
z2

σ2
z

]

σ2
i =

kBT

2Mw2
i

(12.15)

which is basically a Gaussian distribution of the position along either axis with widths σr

and σz. Likewise the spread of velocities is given by:

n(p) =

∫

W (x,p) d3x. (12.16)

which also yields a Gaussian distribution,

n(v) ∝ exp

[

− v2

2σ2
v

]

σ2
v =

√

kBT

M

(12.17)

12.2.1 Scattering rate calculation for non-resonant light

If atoms are held in the focus of a laser beam, one obvious concern is that the atoms will

scatter the photons from the laser forming the ODT, and hence be heated out of the trap.

In order to quantify this, we consider the treatment in [140], where for small population of

the excited state, the scattering rate is given by the Kramers-Heisenberg formula.

Γi→f =
α2w3E2

0

3~c

∣
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2

(12.18)

with ǫr the polarization of the radiated light. The expression in equation 12.18 describes

both the Rayleigh scattering rate i → i and the Raman scattering rate, where i → f , with
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i 6= f . The Raman scattering rate leads to spin depolarization [140]. This is particularly

important in an EDM measurement, as the observable is the spin precession frequency, and

spin-depolarization leads to a loss of signal contrast.

Working in the far off resonance regime where |∆| ≪ w, equations 12.3, 12.4 and 12.18

lead to the observation that while the dipole potential scales as I/∆, the scattering rate goes

as I/∆2. Consequently, it is desirable to use high intensities and large detunings in order to

keep the potential deep and the scattering rate low.

12.3 Experimental results

We implement an ODT for radium atoms using a 1550 nm laser. At 1550 nm, the AC

polarizability of the ground state of radium is calculated to be α0 = 3.21 × 10−23cm3 This

means that with 40 W of light focused to a waist of 50 µm, the ODT has a depth of ∼ 540

µK. A particularly attractive property of 1550 nm is that the differential polarizability of the

1S0 and 3P1 levels is vanishingly small. In other words, 1550 nm is a near ‘magic’ wavelength

for the 714 nm transition in radium atoms. As we will discuss below, this feature aids

significantly in effecting a transfer of atoms from the MOT to the ODT. We will described

below our studies of loading an ODT from a MOT, and will follow that with a report of our

studies of transporting atoms by moving the ODT.

Because radium is rather heavy, and the trapping ODT potential is quite shallow, the

correction of the trapping potential due to gravity is non-negligible.

Utrap(x, y, z) = UODT (x, y, z) +mg[x cos(θ) + z sin(θ)] (12.19)

where θ is the angle that the ODT axis forms with the direction of gravity. We show in

figure 12.5 the way the trapping potential is perturbed by gravity with θ = 90◦. Because
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Table 12.2: Trapping parameters for 226Ra in 1550 nm bus-ODT. We use the value α0 =
3.21× 10−23 cm3 for the radium ground state polarizability.

Parameter Magnitude

Detuning from 7s7p3P1 ∆ 1.4× 1015 Hz

Power P0 40 W

Waist w0 50 µm

Rayleigh length ZR 5 mm

Trap depth U0 540 µK

Recoil temperature Trec 34 nK

Rayleigh scattering rate Γ1550 5× 10−1 s−1

Raman scattering rate Γi→f 5× 10−6 s−1

Axial trap frequency ωz/2π 5.5 Hz

Radial trap frequency ωr/2π 900 Hz

of this, the ODT must be aligned perpendicular to the direction of gravity to a very good

degree. In order to achieve less than 1 mrad alignment perpendicular to gravity, we make

use of a laser leveler. We align the ODT laser to be parallel to the light from the leveler and

therefore transfer the levelness.
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Figure 12.5: Contour plots of the ODT potential in µK. The parameters of the trap are given
in table 12.2. The left panel shows the potential sampled by the atoms with no gravity, while
the right panel includes the effect of gravity. In the figures, the laser is propagating along
the z direction, and is focused at the origin z = 0.
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12.3.1 Loading ODT from MOT

The necessary conditions for an efficient transfer of atoms from a MOT to a (conservative)

ODT are (1.) large phase space overlap between the MOT and ODT potential, and (2.) the

presence of an energy dissipation mechanism. We consider these two conditions below. Thor-

ough studies of MOT to ODT transfer have been published by [98, 118, 157] and references

therein.

We say that there is a large phase space overlap between the MOT and ODT when the

position and momentum distribution of the atoms in the MOT closely matches the trapping

potential of the ODT. While the MOT is roughly spherical in shape with a typical radius

on the order of a millimeter, the ODT has a more cylindrical shape—with a diameter of

∼ 100 µm and a length of ∼ 2 cm. In order to maximize the spatial overlap of the MOT

and ODT, we compress the volume of the MOT around the position of the ODT beam.

We achieve this by ramping up the gradient of the magnetic fields used for the MOT. An

example of the compression achieved was shown in figure 10.10. While this is desirable for

optimal overlap with the ODT, it is not so good for achieving an efficient loading of the

MOT. But, because our experiment cycles between a ‘loading’ phase and a ‘probing’ phase,

we are able to optimize both.

As shown in figure 12.5, the ODT formed with parameters given in table 12.2 has a depth

of ∼ 540 µK. A large momentum overlap is therefore obtained from atoms which are colder

than the trapping potential. The measured temperatures of atoms in the radium MOTs we

constructed are T ∼ 40µK.

The presence of an energy dissipation mechanism is necessary for transfer into the ODT

because the ODT potential is conservative, and the atoms that ‘fall’ into the ODT potential

will have enough kinetic energy to escape from the well. In order to trap them, some of

that kinetic energy must be dissipated while they are in the trap. One way to dissipate this
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is collisionally. If the density of atoms is high enough, radium-radium collisions will lead

to a loss of energy for some of the atoms allowing them to be bound. More conventionally

though, laser cooling is used to dissipate energy, while the atoms are in the ODT potential.

Recall that the atoms in the MOT are in a 3D optical molasses. When subjected to the

ODT beam, the operating frequency of the molasses is shifted by virtue of the differential

AC stark shift of the levels in the transition used for the molasses. In order to maintain

the operation of the molasses, one must compensate for this differential AC stark shift. One

technique is to temporally chop the ODT beam off and on at a frequency which is high

compared to the trap frequency. This means that the atoms will be cooled for one half of

the chopping cycle and not cooled during the other half when the ODT is on. This scheme

was used for example in trapping rubidium atoms [109]. As noted above, 1550 nm is to a

very good approximation a ‘magic’ wavelength for the 714 nm transition used for optical

molasses. The molasses which supports the atoms in the MOT is therefore also very efficient

at cooling the atoms which are in the ODT. We show in figure 12.6 an image of the atoms

in the combined MOT plus ODT potentials.

Figure 12.6: Image of Atoms confined in a combination MOT and Dipole trap.

We show a schematic of the timing which we use in transferring atoms for our experiments

in figure 12.7.After loading the MOT for a time interval tload, we switch the MOT to ‘probing’
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mode for an interval tprobe during which we take an image of the atoms in the trap. This is

to establish the “pre-drop” value. Thereafter, we operate in cooling mode for a duration tcool.

To demonstrate that the atoms are indeed transferred, we ‘drop’ the MOT by shuttering the

molasses beams for some time interval tdrop. After that time interval elapses, we revert to the

probing mode where we recapture the atoms into the MOT and once again take an image

of the trapped atoms. The ratio of the number of atoms in the two images is dependent on

the initial transfer efficiency, as well as on the lifetime of the ODT. By varying the duration

of tdrop, we can independently extract both the lifetime and the transfer efficiency. We show

some ODT lifetime measurements in figure 12.8.

Figure 12.7: Timing Scheme for transferring atoms from MOT to ODT. During the drop
phase, the light which forms the molasses is shuttered. The intensities and detunings of the
714 nm light as well as the magnitudes of the magnetic field gradients during the different
operating modes are given in table 10.4.2

We determining ODT lifetimes by performing an experiment with a timing scheme given

in figure 12.7—varying the drop time tdrop. In figure 12.8, we show the measurements of the
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ODT lifetime for three different values of the ODT depth which we adjusted by adjusting

the intensity of the ODT laser. We note that the MOT to ODT transfer efficiency, given by

the y intercept of the exponential decay, is strongly dependent on the depth of the ODT.

However, the 1/e lifetime of the trap is roughly constant for all the depths at approximately

7 seconds.
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Figure 12.8: ODT lifetime measurement. The top panel shows the timing set for the experi-
ment. The survival fraction plotted below is obtained from the ratio of the number of atoms
in the pre-drop and post drop images.

12.3.2 Heating Mechanisms

As shown in figure 12.8, the lifetimes of the atoms in the ODT are on the order of 7 seconds.

Heating mechanisms that could limit the trap lifetime are off-resonance excitation by 1550

nm photons, intensity and pointing noise of the ODT laser, and collisions with background

gas.

We estimate the rate of heating due to Rayleigh scattering of the off resonant 1550 nm

light to be Γ1550 Trec, where Trec = 0.04µK is the recoil temperature of a scattered 1550 nm

photon. This yields a heating timescale necessary for escaping the trap on the order 103

s, which is much longer than the 7 seconds we observe. Also, we measured the intensity

and pointing noise spectrum of our setup. Using an analysis given by [118], we are able

167



to estimate the timescale for heating out of the trap due to intensity and pointing noise to

correspond to a couple hundred seconds. Moreover, the ODT lifetime limit due to pointing

noise should scale inversely with the depth of the ODT. We show in figure 12.8 that the

ODT lifetimes are independent of the depth of the ODT. We therefore conclude that neither

pointing/intensity noise, nor off resonant excitation are responsible for the observed 7 second

lifetime.

We are left with the option of collisions with background gas. At a measured pres-

sure of 1 × 10−9 Torr, the 7 second lifetime follows the ‘rule of thumb’ observed by other

experimenters reported in [75].

12.3.3 Transport of atoms using moving ODT

Once the atoms are successfully transferred from the MOT to the ODT, we need to move

them to the science region. We do so by translating the lens which is used to focus the

light forming the ODT. The atoms which are trapped at the focus are consequently moved

along. We make use of an air bearing translation stage from Aerotech (Aerotech ABL2000

series) in order to move the lens smoothly. It has a total travel of 1.1 meters and has a

programmable translation profile. The profile of the velocity, acceleration and jerk employed

during the motion is important, and affects the efficiency with which the atoms can be moved.

Experiments which have implemented a similar scheme to transfer of atoms are reported in

[78, 44]. For the DC Stark shift measurements we discuss, we need to translate the atoms ∼

0.5 m. For the permanent EDM measurements proposed in section 9.2, we plan on moving

the atoms a distance of 1 m. To our knowledge, we are the first group to attempt to move

atoms using a moving ODT a distance greater than 30 cm.
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Figure 12.9: Setup of optics for bus-ODT. The emerging beam from the fiber laser launcher
is magnified by a single telescope formed by lenses 1 and 2 with focal lengths f1 and f2
respectively. It is then focused by a final lens with focal length f3 = 2000 mm. By translating
lens 3, we can move the position of the focus from the MOT to the‘science chamber

Consider the time dependent ODT potential along the z axis.

U(z, t) =
U0

1 + ((z − z0(t))/zR)2
(12.20)

The time dependence comes from the fact that the focus of the light forming the ODT is

being moved with a displacement profile z0(t). The velocity, acceleration and jerk of the

motion are then ż0(t), z̈0(t), and
...
z 0(t) respectively. We have studied the following motion
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profiles to determine the most efficient one for transferring atoms from the MOT to the

science chamber.

(i.) Sine Wave In this profile, the displacement, and higher derivatives are all sinusoidal

functions of time.

(ii.) Triangle Wave, In this profile, the displacement is a linear function of time and

so there is consequently a constant velocity during the motion. Because the motion

abruptly starts and stops, there are spikes of acceleration at the beginning and end of

the motion.

(iii.) Parabolic Wave This profile involves moving with a constant acceleration to the

midway of the trip, and then constantly decelerating on the second half. The net

result of this is that but for the star, mid-way point, and end of the motion, the atoms

do not experience any jerk. At those three points however, there is a rather large jerk.

(iv.) Minimal Jerk. The minimal jerk motion is similar to the parabolic wave. However,

it is piecewise defined, such that the acceleration is a smooth function of time, and the

magnitude of the jerk is minimized

Representative measurements of the velocity and acceleration for the different profiles

are given in figure 12.10.

In order to determine the efficiency with which the atoms are being moved from one

point to another, we measured the fraction of atoms that survived after the trap was moved

a certain distance and back. We did so by using a timing scheme as depicted in figure 12.7.

During the time the MOT was dropped, the translation stage was moved a desired distance

with a given motion profile. The ratio of the number of atoms detected before and after

the trip was indicative of efficiency of transport—after a correction was made for the trap

lifetime. It is important that the motion be initiated when the MOT is dropped. Otherwise,
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Figure 12.10: Motion profiles used for moving atoms from MOT to ODT. The top graph
shows the position as a function of time, the middle graph shows velocity, while the lower
graph shows the acceleration profile.

the atoms will not be carried along, as the force due to the molasses is stronger than that

due to the ODT along the weak axis, along which the atoms are moved.

We observed that the sinusoidal motion profile was the most efficient of the four that we

tried. In effect, the ODT is moved along a sinusoidal path.

z0(t) = Zmax sin(ω̃ t− φ̃). (12.21)

where ω̃ = π/T0, and φ̃ = π/4 with T0 being the time required to to go from 0 to the

maximum displacement Zmax.

The profile of the sinusoidal displacement, velocity and acceleration are shown in figure

12.12. In terms of the maximum displacement Zmax,

Vmax = ω̃Zmax

amax = ω̃2Zmax

(12.22)
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Regardless of the distance traversed, we observed that the survival fraction was determined

almost exclusively by the average velocity of the trap. The survival fraction had a form as

shown in figure 12.11.
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Figure 12.11: Normalized transport efficiencies. The survival fraction was obtained by de-
termining the ratio of the MOT size before and after the round trip.
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to go from the start position to the maximum of the motion.
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APPENDIX A

TEMPERATURE MEASUREMENT OF TRAPPED RADIUM

ATOMS

We determine the temperature of the radium MOT using a time of flight method. We derive

below the time of flight signal for a cloud of atoms with a temperature T–following very

closely the treatment in [33]. The basic idea of the TOF temperature determination is that

the velocity distribution of a cloud with a temperature T has a phase space distribution

given by

W(r,v) =
∏

i∈{x,y,z}

g(i0, σ0) g(vi0, σv) (A.1)

where

g(x, σ) =

√

1

2πσ2
Exp[− x2

2σ2
]. (A.2)

That is, both the spatial and velocity distributions are characterized by Gaussian, with

widths σi and σv respectively. If the sample is isotropic, then σx = σy = σz. Likewise, for

σv. We also have that the temperature in a particular direction is given by

T =
M

kB
σv (A.3)

When a sample of trapped atoms with this initial distribution is dropped, the atoms will

expand freely in two dimensions and fall under the influence of gravity in the other dimension.

We then have that after some time interval t, the mean velocities are given by

vx0 =
x− x0
t

− 1

2
gt, vy0 =

y − y0
t

, vz0 =
z − z0
t

. (A.4)
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which yields a phase space distribution

W(x, y, z, t) = g(x− gt2/s, σt)g(y, σt)g(z, σt)

σt =
√

σ2
0 + σ2

vt
2

(A.5)

y

x

z

Probe Beam

2 w0

gravity
~ 5 mm

Figure A.1: Setup for experiment to perform a Time of Flight Temperature measurement.

Now consider the probe beam on to which the atoms are dropped. We assume here a

Gaussian probe beam characterized by widths σIx and σIy, located a distance x̃ = 1/2 gt20

from the initial position of the cloud. Then, the intensity distribution of the probe laser

beam is given by

I(x, y) = P0 g(x− x̃, σIx) g(y, σIy) (A.6)

We can then evaluate N(t), the number of atoms which pass through the probe beam as a

function of time from the expression

N(t) =

∫ ∫ ∞

−∞

∫

I(x, y) W(x, y, z, t) dx dy dz

=
P0

2π
√

(σ2
Ix + σ2

t )(σ
2
Iy + σ2

t )
Exp

[

−
(

g(t20 − t2)

2
√
2
√

σ2
Ix + σ2

t

−
)]

(A.7)
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In the limit in which σIx << σt , and σIy → ∞, equation A.7 reduces to

N(t) =
P0

2πσ2
vt

2
0

Exp

[

−
(
g(t2 − t20)

2
√
2σt

)2
]

(A.8)

Our temperature determination then simply depends on dropping the atoms, and fitting

the time of flight fluorescence to equation A.8. In measuring the temperature, we setup a

timing scheme whereby atoms were first accumulated in the MOT. Thereafter, the light going

to the MOT was shuttered with a mechanical shutter. At the same time, the light comprising

the probe beam was turned on a distance x̃ ∼ 5 mm below the MOT. Our probe beam was

generated by on resonance 714 nm light, which was focused in the z direction (σIx ∼ 100µ

m but expanded in the y direction (σIy ∼ 300 mm. We made use of the same imaging optics

used to detect the MOT in detecting the TOF fluorescence. It these experiments, it was

extremely important that we had very low backgrounds, as the interaction time between the

atoms and the light is so short (few ms), and our collection efficiency was sub optimal. In

order to get a signal with sufficient signal to noise to fit, we integrated for time intervals on

the order of 20 minutes in order to obtain a TOF signal as shown in A.

We obtained minimum temperatures between 40 µK and 50 µK. We studied the de-

pendence on the the intensity and detuning of the molasses. There is gross agreement, in

particular with the intensity dependence. Some of the systematic temperature trends we

observed are shown in figure A. Recall that from Doppler cooling theory, the Doppler tem-

perature for a sample of atoms in an optical molasses made of 714 nm light is TD ∼ 10µK.

For our radium MOT, our measured temperatures have consistently been higher. We suspect

that this might partly be due to the fact that our 714 nm laser has a rather large linewidth

of a few hundred kHz.
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Figure A.3: Dependence of the MOT temperature with the intensity of the cooling light. We
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